# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import json from pathlib import Path import gradio as gr import torch import spaces from uno.flux.pipeline import UNOPipeline def get_examples(examples_dir: str = "assets/examples") -> list: examples = Path(examples_dir) ans = [] for example in examples.iterdir(): if not example.is_dir(): continue with open(example / "config.json") as f: example_dict = json.load(f) example_list = [] example_list.append(example_dict["useage"]) # case for example_list.append(example_dict["prompt"]) # prompt for key in ["image_ref1", "image_ref2", "image_ref3", "image_ref4"]: if key in example_dict: example_list.append(str(example / example_dict[key])) else: example_list.append(None) example_list.append(example_dict["seed"]) ans.append(example_list) return ans def create_demo( model_type: str, device: str = "cuda" if torch.cuda.is_available() else "cpu", offload: bool = False, ): pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512) pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate) badges_text = r"""
""".strip() with gr.Blocks() as demo: gr.Markdown(f"# UNO by UNO team") gr.Markdown(badges_text) with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", value="handsome woman in the city") with gr.Row(): image_prompt1 = gr.Image(label="Ref Img1", visible=True, interactive=True, type="pil") image_prompt2 = gr.Image(label="Ref Img2", visible=True, interactive=True, type="pil") image_prompt3 = gr.Image(label="Ref Img3", visible=True, interactive=True, type="pil") image_prompt4 = gr.Image(label="Ref img4", visible=True, interactive=True, type="pil") with gr.Row(): with gr.Column(): width = gr.Slider(512, 2048, 512, step=16, label="Gneration Width") height = gr.Slider(512, 2048, 512, step=16, label="Gneration Height") with gr.Column(): gr.Markdown("📌 The model trained on 512x512 resolution.\n") gr.Markdown( "The size closer to 512 is more stable," " and the higher size gives a better visual effect but is less stable" ) with gr.Accordion("Advanced Options", open=False): with gr.Row(): num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps") guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True) seed = gr.Number(-1, label="Seed (-1 for random)") generate_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(label="Generated Image") download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False) inputs = [ prompt, width, height, guidance, num_steps, seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4 ] generate_btn.click( fn=pipeline.gradio_generate, inputs=inputs, outputs=[output_image, download_btn], ) example_text = gr.Text("", visible=False, label="Case For:") examples = get_examples("./assets/examples") gr.Examples( examples=examples, inputs=[ example_text, prompt, image_prompt1, image_prompt2, image_prompt3, image_prompt4, seed, output_image ], ) return demo if __name__ == "__main__": from typing import Literal from transformers import HfArgumentParser @dataclasses.dataclass class AppArgs: name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev" device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu" offload: bool = dataclasses.field( default=False, metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."} ) port: int = 7860 parser = HfArgumentParser([AppArgs]) args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs] args = args_tuple[0] demo = create_demo(args.name, args.device, args.offload) demo.launch(server_port=args.port, ssr_mode=False)