Spaces:
Sleeping
Sleeping
Update discriminatorModel.py
Browse files- discriminatorModel.py +1 -16
discriminatorModel.py
CHANGED
@@ -1,22 +1,7 @@
|
|
1 |
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
-
|
5 |
-
# The Embedding model
|
6 |
-
class Embedding(nn.Module):
|
7 |
-
def __init__(self, size_in, size_out):
|
8 |
-
super(Embedding, self).__init__()
|
9 |
-
self.text_embedding = nn.Sequential(
|
10 |
-
nn.Linear(size_in, size_out),
|
11 |
-
nn.BatchNorm1d(1),
|
12 |
-
nn.LeakyReLU(0.2, inplace=True)
|
13 |
-
)
|
14 |
-
|
15 |
-
def forward(self, x, text):
|
16 |
-
embed_out = self.text_embedding(text)
|
17 |
-
embed_out_resize = embed_out.repeat(4, 1, 4, 1).permute(1, 3, 0, 2) # Resize to match the discriminator input size
|
18 |
-
out = torch.cat([x, embed_out_resize], 1) # Concatenate text embedding with the input feature map
|
19 |
-
return out
|
20 |
|
21 |
# The Discriminator model
|
22 |
class Discriminator(nn.Module):
|
|
|
1 |
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
+
from discriminatorEmbedding import Embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# The Discriminator model
|
7 |
class Discriminator(nn.Module):
|