import gradio as gr import os import importlib import sys from algos.PWS import * from utils.util import * from nodes.Worker import * from prompts import fewshots # Load API keys with open(os.path.join('./keys/', 'openai.key'), 'r') as f: os.environ["OPENAI_API_KEY"] = f.read().strip() with open(os.path.join('./keys/', 'serpapi.key'), 'r') as f: os.environ["SERPAPI_API_KEY"] = f.read().strip() def reload_modules(): """Reload all relevant modules""" importlib.reload(sys.modules['nodes.Worker']) importlib.reload(sys.modules['algos.PWS']) importlib.reload(sys.modules['utils.util']) importlib.reload(sys.modules['prompts.fewshots']) importlib.reload(sys.modules['prompts.solver']) return "✅ Modules reloaded successfully!" def process(tools, model, input_text): # Use study abroad fewshot for study-related questions if any(word in input_text.lower() for word in ["study", "student", "university", "college", "school", "abroad", "học", "trường", "du học", "học bổng", "gpa", "ielts", "tcf", "delf", "scholarship"]): # Ensure both Google and LLM are included for study abroad queries if "Google" not in tools: tools.append("Google") if "LLM" not in tools: tools.append("LLM") method = PWS_Base(planner_model=model, solver_model=model, fewshot=fewshots.STUDY_ABROAD_PWS, available_tools=tools) else: method = PWS_Base(planner_model=model, solver_model=model, fewshot=fewshots.TRIVIAQA_PWS, available_tools=tools) response = method.run(input_text) # Extract planner log plan = response["planner_log"].split(input_text)[1].strip('\n') # Extract full solver log without truncating at "Now begin to solve the task" solve = response["solver_log"].split(input_text)[1].strip('\n') # Get the complete output output = response["output"] return plan, solve, output with gr.Blocks() as iface: gr.Markdown("# ReWOO Demo 🤗") gr.Markdown(""" Demonstrating our recent work -- ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models. Note that this demo is only a conceptual impression of our work, we use a zero-shot set up and not optimizing the run time. """) with gr.Row(): with gr.Column(): tools = gr.CheckboxGroup(['Wikipedia', 'Google', 'LLM', 'WolframAlpha', 'Calculator'], label="Tools") model = gr.Dropdown(["text-davinci-003", "gpt-3.5-turbo"], label="Model") input_text = gr.Textbox(lines=2, placeholder="Input Here...", label="Input") with gr.Row(): submit_btn = gr.Button("Submit") refresh_btn = gr.Button("🔄 Refresh Modules") with gr.Column(): planner = gr.Textbox(lines=4, label="Planner") solver = gr.Textbox(lines=4, label="Solver") output = gr.Textbox(label="Output") status = gr.Textbox(label="Status", value="Ready") # Set up event handlers submit_btn.click(fn=process, inputs=[tools, model, input_text], outputs=[planner, solver, output]) refresh_btn.click(fn=reload_modules, outputs=status) input_text.submit(fn=process, inputs=[tools, model, input_text], outputs=[planner, solver, output]) # Keep Enter key functionality # Examples gr.Examples([ [["Wikipedia", "LLM"], "gpt-3.5-turbo", "American Callan Pinckney's eponymously named system became a best-selling (1980s-2000s) book/video franchise in what genre?"], [['Google', 'LLM'], "gpt-3.5-turbo", "What is the recent paper ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models about?"], [["Calculator","WolframAlpha"], "gpt-3.5-turbo", "the car can accelerate from 0 to 27.8 m/s in a time of 3.85 seconds. Determine the acceleration of this car in m/s/s."], ], inputs=[tools, model, input_text]) if __name__ == "__main__": iface.launch()