# Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/schedulers/scheduling_unipc_multistep.py # Convert unipc for flow matching # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import math from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput) from diffusers.utils import deprecate, is_scipy_available if is_scipy_available(): import scipy.stats class FlowUniPCMultistepScheduler(SchedulerMixin, ConfigMixin): """ `UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. solver_order (`int`, default `2`): The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1` due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. prediction_type (`str`, defaults to "flow_prediction"): Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts the flow of the diffusion process. thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. dynamic_thresholding_ratio (`float`, defaults to 0.995): The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. sample_max_value (`float`, defaults to 1.0): The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`. predict_x0 (`bool`, defaults to `True`): Whether to use the updating algorithm on the predicted x0. solver_type (`str`, default `bh2`): Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2` otherwise. lower_order_final (`bool`, default `True`): Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. disable_corrector (`list`, default `[]`): Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)` and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is usually disabled during the first few steps. solver_p (`SchedulerMixin`, default `None`): Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`. use_karras_sigmas (`bool`, *optional*, defaults to `False`): Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, the sigmas are determined according to a sequence of noise levels {σi}. use_exponential_sigmas (`bool`, *optional*, defaults to `False`): Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process. timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. final_sigmas_type (`str`, defaults to `"zero"`): The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, solver_order: int = 2, prediction_type: str = "flow_prediction", shift: Optional[float] = 1.0, use_dynamic_shifting=False, thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, sample_max_value: float = 1.0, predict_x0: bool = True, solver_type: str = "bh2", lower_order_final: bool = True, disable_corrector: List[int] = [], solver_p: SchedulerMixin = None, timestep_spacing: str = "linspace", steps_offset: int = 0, final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min" ): if solver_type not in ["bh1", "bh2"]: if solver_type in ["midpoint", "heun", "logrho"]: self.register_to_config(solver_type="bh2") else: raise NotImplementedError( f"{solver_type} is not implemented for {self.__class__}") self.predict_x0 = predict_x0 # setable values self.num_inference_steps = None alphas = np.linspace(1, 1 / num_train_timesteps, num_train_timesteps)[::-1].copy() sigmas = 1.0 - alphas sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32) if not use_dynamic_shifting: # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) # pyright: ignore self.sigmas = sigmas self.timesteps = sigmas * num_train_timesteps self.model_outputs = [None] * solver_order self.timestep_list = [None] * solver_order self.lower_order_nums = 0 self.disable_corrector = disable_corrector self.solver_p = solver_p self.last_sample = None self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to( "cpu") # to avoid too much CPU/GPU communication self.sigma_min = self.sigmas[-1].item() self.sigma_max = self.sigmas[0].item() @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index @property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index # Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps def set_timesteps( self, num_inference_steps: Union[int, None] = None, device: Union[str, torch.device] = None, sigmas: Optional[List[float]] = None, mu: Optional[Union[float, None]] = None, shift: Optional[Union[float, None]] = None, ): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): Total number of the spacing of the time steps. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ if self.config.use_dynamic_shifting and mu is None: raise ValueError( " you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`" ) if sigmas is None: sigmas = np.linspace(self.sigma_max, self.sigma_min, num_inference_steps + 1).copy()[:-1] # pyright: ignore if self.config.use_dynamic_shifting: sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore else: if shift is None: shift = self.config.shift sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) # pyright: ignore if self.config.final_sigmas_type == "sigma_min": sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0])**0.5 elif self.config.final_sigmas_type == "zero": sigma_last = 0 else: raise ValueError( f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" ) timesteps = sigmas * self.config.num_train_timesteps sigmas = np.concatenate([sigmas, [sigma_last] ]).astype(np.float32) # pyright: ignore self.sigmas = torch.from_numpy(sigmas) self.timesteps = torch.from_numpy(timesteps).to( device=device, dtype=torch.int64) self.num_inference_steps = len(timesteps) self.model_outputs = [ None, ] * self.config.solver_order self.lower_order_nums = 0 self.last_sample = None if self.solver_p: self.solver_p.set_timesteps(self.num_inference_steps, device=device) # add an index counter for schedulers that allow duplicated timesteps self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to( "cpu") # to avoid too much CPU/GPU communication # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: """ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing pixels from saturation at each step. We find that dynamic thresholding results in significantly better photorealism as well as better image-text alignment, especially when using very large guidance weights." https://arxiv.org/abs/2205.11487 """ dtype = sample.dtype batch_size, channels, *remaining_dims = sample.shape if dtype not in (torch.float32, torch.float64): sample = sample.float( ) # upcast for quantile calculation, and clamp not implemented for cpu half # Flatten sample for doing quantile calculation along each image sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) abs_sample = sample.abs() # "a certain percentile absolute pixel value" s = torch.quantile( abs_sample, self.config.dynamic_thresholding_ratio, dim=1) s = torch.clamp( s, min=1, max=self.config.sample_max_value ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] s = s.unsqueeze( 1) # (batch_size, 1) because clamp will broadcast along dim=0 sample = torch.clamp( sample, -s, s ) / s # "we threshold xt0 to the range [-s, s] and then divide by s" sample = sample.reshape(batch_size, channels, *remaining_dims) sample = sample.to(dtype) return sample # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma): return sigma * self.config.num_train_timesteps def _sigma_to_alpha_sigma_t(self, sigma): return 1 - sigma, sigma # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps def time_shift(self, mu: float, sigma: float, t: torch.Tensor): return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma) def convert_model_output( self, model_output: torch.Tensor, *args, sample: torch.Tensor = None, **kwargs, ) -> torch.Tensor: r""" Convert the model output to the corresponding type the UniPC algorithm needs. Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. Returns: `torch.Tensor`: The converted model output. """ timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) if sample is None: if len(args) > 1: sample = args[1] else: raise ValueError( "missing `sample` as a required keyward argument") if timestep is not None: deprecate( "timesteps", "1.0.0", "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", ) sigma = self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) if self.predict_x0: if self.config.prediction_type == "flow_prediction": sigma_t = self.sigmas[self.step_index] x0_pred = sample - sigma_t * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," " `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler." ) if self.config.thresholding: x0_pred = self._threshold_sample(x0_pred) return x0_pred else: if self.config.prediction_type == "flow_prediction": sigma_t = self.sigmas[self.step_index] epsilon = sample - (1 - sigma_t) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," " `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler." ) if self.config.thresholding: sigma_t = self.sigmas[self.step_index] x0_pred = sample - sigma_t * model_output x0_pred = self._threshold_sample(x0_pred) epsilon = model_output + x0_pred return epsilon def multistep_uni_p_bh_update( self, model_output: torch.Tensor, *args, sample: torch.Tensor = None, order: int = None, # pyright: ignore **kwargs, ) -> torch.Tensor: """ One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified. Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model at the current timestep. prev_timestep (`int`): The previous discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. order (`int`): The order of UniP at this timestep (corresponds to the *p* in UniPC-p). Returns: `torch.Tensor`: The sample tensor at the previous timestep. """ prev_timestep = args[0] if len(args) > 0 else kwargs.pop( "prev_timestep", None) if sample is None: if len(args) > 1: sample = args[1] else: raise ValueError( " missing `sample` as a required keyward argument") if order is None: if len(args) > 2: order = args[2] else: raise ValueError( " missing `order` as a required keyward argument") if prev_timestep is not None: deprecate( "prev_timestep", "1.0.0", "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", ) model_output_list = self.model_outputs s0 = self.timestep_list[-1] m0 = model_output_list[-1] x = sample if self.solver_p: x_t = self.solver_p.step(model_output, s0, x).prev_sample return x_t sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[ self.step_index] # pyright: ignore alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) h = lambda_t - lambda_s0 device = sample.device rks = [] D1s = [] for i in range(1, order): si = self.step_index - i # pyright: ignore mi = model_output_list[-(i + 1)] alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) lambda_si = torch.log(alpha_si) - torch.log(sigma_si) rk = (lambda_si - lambda_s0) / h rks.append(rk) D1s.append((mi - m0) / rk) # pyright: ignore rks.append(1.0) rks = torch.tensor(rks, device=device) R = [] b = [] hh = -h if self.predict_x0 else h h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 h_phi_k = h_phi_1 / hh - 1 factorial_i = 1 if self.config.solver_type == "bh1": B_h = hh elif self.config.solver_type == "bh2": B_h = torch.expm1(hh) else: raise NotImplementedError() for i in range(1, order + 1): R.append(torch.pow(rks, i - 1)) b.append(h_phi_k * factorial_i / B_h) factorial_i *= i + 1 h_phi_k = h_phi_k / hh - 1 / factorial_i R = torch.stack(R) b = torch.tensor(b, device=device) if len(D1s) > 0: D1s = torch.stack(D1s, dim=1) # (B, K) # for order 2, we use a simplified version if order == 2: rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device) else: rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype) else: D1s = None if self.predict_x0: x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 if D1s is not None: pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s) # pyright: ignore else: pred_res = 0 x_t = x_t_ - alpha_t * B_h * pred_res else: x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 if D1s is not None: pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s) # pyright: ignore else: pred_res = 0 x_t = x_t_ - sigma_t * B_h * pred_res x_t = x_t.to(x.dtype) return x_t def multistep_uni_c_bh_update( self, this_model_output: torch.Tensor, *args, last_sample: torch.Tensor = None, this_sample: torch.Tensor = None, order: int = None, # pyright: ignore **kwargs, ) -> torch.Tensor: """ One step for the UniC (B(h) version). Args: this_model_output (`torch.Tensor`): The model outputs at `x_t`. this_timestep (`int`): The current timestep `t`. last_sample (`torch.Tensor`): The generated sample before the last predictor `x_{t-1}`. this_sample (`torch.Tensor`): The generated sample after the last predictor `x_{t}`. order (`int`): The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`. Returns: `torch.Tensor`: The corrected sample tensor at the current timestep. """ this_timestep = args[0] if len(args) > 0 else kwargs.pop( "this_timestep", None) if last_sample is None: if len(args) > 1: last_sample = args[1] else: raise ValueError( " missing`last_sample` as a required keyward argument") if this_sample is None: if len(args) > 2: this_sample = args[2] else: raise ValueError( " missing`this_sample` as a required keyward argument") if order is None: if len(args) > 3: order = args[3] else: raise ValueError( " missing`order` as a required keyward argument") if this_timestep is not None: deprecate( "this_timestep", "1.0.0", "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", ) model_output_list = self.model_outputs m0 = model_output_list[-1] x = last_sample x_t = this_sample model_t = this_model_output sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[ self.step_index - 1] # pyright: ignore alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) h = lambda_t - lambda_s0 device = this_sample.device rks = [] D1s = [] for i in range(1, order): si = self.step_index - (i + 1) # pyright: ignore mi = model_output_list[-(i + 1)] alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) lambda_si = torch.log(alpha_si) - torch.log(sigma_si) rk = (lambda_si - lambda_s0) / h rks.append(rk) D1s.append((mi - m0) / rk) # pyright: ignore rks.append(1.0) rks = torch.tensor(rks, device=device) R = [] b = [] hh = -h if self.predict_x0 else h h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 h_phi_k = h_phi_1 / hh - 1 factorial_i = 1 if self.config.solver_type == "bh1": B_h = hh elif self.config.solver_type == "bh2": B_h = torch.expm1(hh) else: raise NotImplementedError() for i in range(1, order + 1): R.append(torch.pow(rks, i - 1)) b.append(h_phi_k * factorial_i / B_h) factorial_i *= i + 1 h_phi_k = h_phi_k / hh - 1 / factorial_i R = torch.stack(R) b = torch.tensor(b, device=device) if len(D1s) > 0: D1s = torch.stack(D1s, dim=1) else: D1s = None # for order 1, we use a simplified version if order == 1: rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device) else: rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype) if self.predict_x0: x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 if D1s is not None: corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s) else: corr_res = 0 D1_t = model_t - m0 x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t) else: x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 if D1s is not None: corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s) else: corr_res = 0 D1_t = model_t - m0 x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t) x_t = x_t.to(x.dtype) return x_t def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item() # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index def _init_step_index(self, timestep): """ Initialize the step_index counter for the scheduler. """ if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index def step(self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, return_dict: bool = True, generator=None) -> Union[SchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the multistep UniPC. Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if self.step_index is None: self._init_step_index(timestep) use_corrector = ( self.step_index > 0 and self.step_index - 1 not in self.disable_corrector and self.last_sample is not None # pyright: ignore ) model_output_convert = self.convert_model_output( model_output, sample=sample) if use_corrector: sample = self.multistep_uni_c_bh_update( this_model_output=model_output_convert, last_sample=self.last_sample, this_sample=sample, order=self.this_order, ) for i in range(self.config.solver_order - 1): self.model_outputs[i] = self.model_outputs[i + 1] self.timestep_list[i] = self.timestep_list[i + 1] self.model_outputs[-1] = model_output_convert self.timestep_list[-1] = timestep # pyright: ignore if self.config.lower_order_final: this_order = min(self.config.solver_order, len(self.timesteps) - self.step_index) # pyright: ignore else: this_order = self.config.solver_order self.this_order = min(this_order, self.lower_order_nums + 1) # warmup for multistep assert self.this_order > 0 self.last_sample = sample prev_sample = self.multistep_uni_p_bh_update( model_output=model_output, # pass the original non-converted model output, in case solver-p is used sample=sample, order=self.this_order, ) if self.lower_order_nums < self.config.solver_order: self.lower_order_nums += 1 # upon completion increase step index by one self._step_index += 1 # pyright: ignore if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. Returns: `torch.Tensor`: A scaled input sample. """ return sample # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor, ) -> torch.Tensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to( device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point( timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to( original_samples.device, dtype=torch.float32) timesteps = timesteps.to( original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index if self.begin_index is None: step_indices = [ self.index_for_timestep(t, schedule_timesteps) for t in timesteps ] elif self.step_index is not None: # add_noise is called after first denoising step (for inpainting) step_indices = [self.step_index] * timesteps.shape[0] else: # add noise is called before first denoising step to create initial latent(img2img) step_indices = [self.begin_index] * timesteps.shape[0] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) noisy_samples = alpha_t * original_samples + sigma_t * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps