Spaces:
Runtime error
Runtime error
up
Browse files
hi_diffusers/pipelines/hidream_image/pipeline_hidream_image.py
CHANGED
@@ -1,31 +1,34 @@
|
|
1 |
import inspect
|
2 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
import math
|
|
|
|
|
|
|
4 |
import einops
|
5 |
import torch
|
6 |
-
from transformers import (
|
7 |
-
CLIPTextModelWithProjection,
|
8 |
-
CLIPTokenizer,
|
9 |
-
T5EncoderModel,
|
10 |
-
T5Tokenizer,
|
11 |
-
LlamaForCausalLM,
|
12 |
-
PreTrainedTokenizerFast
|
13 |
-
)
|
14 |
-
|
15 |
from diffusers.image_processor import VaeImageProcessor
|
16 |
from diffusers.loaders import FromSingleFileMixin
|
17 |
from diffusers.models.autoencoders import AutoencoderKL
|
|
|
18 |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
19 |
from diffusers.utils import (
|
20 |
-
USE_PEFT_BACKEND,
|
21 |
is_torch_xla_available,
|
22 |
logging,
|
23 |
)
|
24 |
from diffusers.utils.torch_utils import randn_tensor
|
25 |
-
from
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
from ...schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
|
|
29 |
|
30 |
if is_torch_xla_available():
|
31 |
import torch_xla.core.xla_model as xm
|
@@ -36,6 +39,7 @@ else:
|
|
36 |
|
37 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
|
|
|
39 |
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
40 |
def calculate_shift(
|
41 |
image_seq_len,
|
@@ -49,13 +53,14 @@ def calculate_shift(
|
|
49 |
mu = image_seq_len * m + b
|
50 |
return mu
|
51 |
|
|
|
52 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
53 |
def retrieve_timesteps(
|
54 |
scheduler,
|
55 |
-
num_inference_steps:
|
56 |
-
device:
|
57 |
-
timesteps:
|
58 |
-
sigmas:
|
59 |
**kwargs,
|
60 |
):
|
61 |
r"""
|
@@ -80,26 +85,34 @@ def retrieve_timesteps(
|
|
80 |
Returns:
|
81 |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
82 |
second element is the number of inference steps.
|
|
|
83 |
"""
|
84 |
if timesteps is not None and sigmas is not None:
|
85 |
-
|
|
|
86 |
if timesteps is not None:
|
87 |
-
accepts_timesteps = "timesteps" in set(
|
|
|
|
|
88 |
if not accepts_timesteps:
|
89 |
-
|
90 |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
91 |
f" timestep schedules. Please check whether you are using the correct scheduler."
|
92 |
)
|
|
|
93 |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
94 |
timesteps = scheduler.timesteps
|
95 |
num_inference_steps = len(timesteps)
|
96 |
elif sigmas is not None:
|
97 |
-
accept_sigmas = "sigmas" in set(
|
|
|
|
|
98 |
if not accept_sigmas:
|
99 |
-
|
100 |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
101 |
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
102 |
)
|
|
|
103 |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
104 |
timesteps = scheduler.timesteps
|
105 |
num_inference_steps = len(timesteps)
|
@@ -108,6 +121,7 @@ def retrieve_timesteps(
|
|
108 |
timesteps = scheduler.timesteps
|
109 |
return timesteps, num_inference_steps
|
110 |
|
|
|
111 |
class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
112 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->image_encoder->transformer->vae"
|
113 |
_optional_components = ["image_encoder", "feature_extractor"]
|
@@ -115,6 +129,7 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
115 |
|
116 |
def __init__(
|
117 |
self,
|
|
|
118 |
scheduler: FlowMatchEulerDiscreteScheduler,
|
119 |
vae: AutoencoderKL,
|
120 |
text_encoder: CLIPTextModelWithProjection,
|
@@ -129,6 +144,7 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
129 |
super().__init__()
|
130 |
|
131 |
self.register_modules(
|
|
|
132 |
vae=vae,
|
133 |
text_encoder=text_encoder,
|
134 |
text_encoder_2=text_encoder_2,
|
@@ -141,21 +157,25 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
141 |
scheduler=scheduler,
|
142 |
)
|
143 |
self.vae_scale_factor = (
|
144 |
-
2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
|
|
|
145 |
)
|
146 |
# HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
147 |
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
148 |
-
self.image_processor = VaeImageProcessor(
|
|
|
|
|
149 |
self.default_sample_size = 128
|
150 |
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
|
151 |
|
152 |
def _get_t5_prompt_embeds(
|
153 |
self,
|
154 |
-
prompt:
|
155 |
num_images_per_prompt: int = 1,
|
156 |
max_sequence_length: int = 128,
|
157 |
-
device:
|
158 |
-
dtype:
|
159 |
):
|
160 |
device = device or self._execution_device
|
161 |
dtype = dtype or self.text_encoder_3.dtype
|
@@ -173,33 +193,47 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
173 |
)
|
174 |
text_input_ids = text_inputs.input_ids
|
175 |
attention_mask = text_inputs.attention_mask
|
176 |
-
untruncated_ids = self.tokenizer_3(
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
logger.warning(
|
181 |
"The following part of your input was truncated because `max_sequence_length` is set to "
|
182 |
f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
|
183 |
)
|
184 |
|
185 |
-
prompt_embeds = self.text_encoder_3(
|
|
|
|
|
186 |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
187 |
_, seq_len, _ = prompt_embeds.shape
|
188 |
|
189 |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
190 |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
191 |
-
prompt_embeds = prompt_embeds.view(
|
|
|
|
|
192 |
return prompt_embeds
|
193 |
-
|
194 |
def _get_clip_prompt_embeds(
|
195 |
self,
|
196 |
tokenizer,
|
197 |
text_encoder,
|
198 |
-
prompt:
|
199 |
num_images_per_prompt: int = 1,
|
200 |
max_sequence_length: int = 128,
|
201 |
-
device:
|
202 |
-
dtype:
|
203 |
):
|
204 |
device = device or self._execution_device
|
205 |
dtype = dtype or text_encoder.dtype
|
@@ -216,14 +250,20 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
216 |
)
|
217 |
|
218 |
text_input_ids = text_inputs.input_ids
|
219 |
-
untruncated_ids = tokenizer(
|
220 |
-
|
|
|
|
|
|
|
|
|
221 |
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
|
222 |
logger.warning(
|
223 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
224 |
f" {218} tokens: {removed_text}"
|
225 |
)
|
226 |
-
prompt_embeds = text_encoder(
|
|
|
|
|
227 |
|
228 |
# Use pooled output of CLIPTextModel
|
229 |
prompt_embeds = prompt_embeds[0]
|
@@ -234,14 +274,14 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
234 |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
235 |
|
236 |
return prompt_embeds
|
237 |
-
|
238 |
def _get_llama3_prompt_embeds(
|
239 |
self,
|
240 |
-
prompt:
|
241 |
num_images_per_prompt: int = 1,
|
242 |
max_sequence_length: int = 128,
|
243 |
-
device:
|
244 |
-
dtype:
|
245 |
):
|
246 |
device = device or self._execution_device
|
247 |
dtype = dtype or self.text_encoder_4.dtype
|
@@ -259,20 +299,30 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
259 |
)
|
260 |
text_input_ids = text_inputs.input_ids
|
261 |
attention_mask = text_inputs.attention_mask
|
262 |
-
untruncated_ids = self.tokenizer_4(
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
logger.warning(
|
267 |
"The following part of your input was truncated because `max_sequence_length` is set to "
|
268 |
f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
|
269 |
)
|
270 |
|
271 |
outputs = self.text_encoder_4(
|
272 |
-
text_input_ids.to(device),
|
273 |
-
attention_mask=attention_mask.to(device),
|
274 |
output_hidden_states=True,
|
275 |
-
output_attentions=True
|
276 |
)
|
277 |
|
278 |
prompt_embeds = outputs.hidden_states[1:]
|
@@ -281,47 +331,46 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
281 |
|
282 |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
283 |
prompt_embeds = prompt_embeds.repeat(1, 1, num_images_per_prompt, 1)
|
284 |
-
prompt_embeds = prompt_embeds.view(
|
|
|
|
|
285 |
return prompt_embeds
|
286 |
-
|
287 |
def encode_prompt(
|
288 |
self,
|
289 |
-
prompt:
|
290 |
-
prompt_2:
|
291 |
-
prompt_3:
|
292 |
-
prompt_4:
|
293 |
-
device:
|
294 |
-
dtype:
|
295 |
num_images_per_prompt: int = 1,
|
296 |
do_classifier_free_guidance: bool = True,
|
297 |
-
negative_prompt:
|
298 |
-
negative_prompt_2:
|
299 |
-
negative_prompt_3:
|
300 |
-
negative_prompt_4:
|
301 |
-
prompt_embeds:
|
302 |
-
negative_prompt_embeds:
|
303 |
-
pooled_prompt_embeds:
|
304 |
-
negative_pooled_prompt_embeds:
|
305 |
max_sequence_length: int = 128,
|
306 |
-
lora_scale:
|
307 |
):
|
308 |
prompt = [prompt] if isinstance(prompt, str) else prompt
|
309 |
-
if prompt is not None
|
310 |
-
batch_size = len(prompt)
|
311 |
-
else:
|
312 |
-
batch_size = prompt_embeds.shape[0]
|
313 |
|
314 |
prompt_embeds, pooled_prompt_embeds = self._encode_prompt(
|
315 |
-
prompt
|
316 |
-
prompt_2
|
317 |
-
prompt_3
|
318 |
-
prompt_4
|
319 |
-
device
|
320 |
-
dtype
|
321 |
-
num_images_per_prompt
|
322 |
-
prompt_embeds
|
323 |
-
pooled_prompt_embeds
|
324 |
-
max_sequence_length
|
325 |
)
|
326 |
|
327 |
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
@@ -331,58 +380,75 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
331 |
negative_prompt_4 = negative_prompt_4 or negative_prompt
|
332 |
|
333 |
# normalize str to list
|
334 |
-
negative_prompt =
|
|
|
|
|
|
|
|
|
335 |
negative_prompt_2 = (
|
336 |
-
batch_size * [negative_prompt_2]
|
|
|
|
|
337 |
)
|
338 |
negative_prompt_3 = (
|
339 |
-
batch_size * [negative_prompt_3]
|
|
|
|
|
340 |
)
|
341 |
negative_prompt_4 = (
|
342 |
-
batch_size * [negative_prompt_4]
|
|
|
|
|
343 |
)
|
344 |
|
345 |
if prompt is not None and type(prompt) is not type(negative_prompt):
|
346 |
-
|
347 |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
348 |
f" {type(prompt)}."
|
349 |
)
|
350 |
-
|
351 |
-
|
|
|
352 |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
353 |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
354 |
" the batch size of `prompt`."
|
355 |
)
|
356 |
-
|
|
|
357 |
negative_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt(
|
358 |
-
prompt
|
359 |
-
prompt_2
|
360 |
-
prompt_3
|
361 |
-
prompt_4
|
362 |
-
device
|
363 |
-
dtype
|
364 |
-
num_images_per_prompt
|
365 |
-
prompt_embeds
|
366 |
-
pooled_prompt_embeds
|
367 |
-
max_sequence_length
|
368 |
)
|
369 |
-
return
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
def _encode_prompt(
|
372 |
self,
|
373 |
-
prompt:
|
374 |
-
prompt_2:
|
375 |
-
prompt_3:
|
376 |
-
prompt_4:
|
377 |
-
device:
|
378 |
-
dtype:
|
379 |
num_images_per_prompt: int = 1,
|
380 |
-
prompt_embeds:
|
381 |
-
pooled_prompt_embeds:
|
382 |
max_sequence_length: int = 128,
|
383 |
):
|
384 |
device = device or self._execution_device
|
385 |
-
|
386 |
if prompt_embeds is None:
|
387 |
prompt_2 = prompt_2 or prompt
|
388 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
@@ -396,38 +462,40 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
396 |
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
397 |
self.tokenizer,
|
398 |
self.text_encoder,
|
399 |
-
prompt
|
400 |
-
num_images_per_prompt
|
401 |
-
max_sequence_length
|
402 |
-
device
|
403 |
-
dtype
|
404 |
)
|
405 |
|
406 |
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
407 |
self.tokenizer_2,
|
408 |
self.text_encoder_2,
|
409 |
-
prompt
|
410 |
-
num_images_per_prompt
|
411 |
-
max_sequence_length
|
412 |
-
device
|
413 |
-
dtype
|
414 |
)
|
415 |
|
416 |
-
pooled_prompt_embeds = torch.cat(
|
|
|
|
|
417 |
|
418 |
t5_prompt_embeds = self._get_t5_prompt_embeds(
|
419 |
-
prompt
|
420 |
-
num_images_per_prompt
|
421 |
-
max_sequence_length
|
422 |
-
device
|
423 |
-
dtype
|
424 |
)
|
425 |
llama3_prompt_embeds = self._get_llama3_prompt_embeds(
|
426 |
-
prompt
|
427 |
-
num_images_per_prompt
|
428 |
-
max_sequence_length
|
429 |
-
device
|
430 |
-
dtype
|
431 |
)
|
432 |
prompt_embeds = [t5_prompt_embeds, llama3_prompt_embeds]
|
433 |
|
@@ -481,25 +549,28 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
481 |
shape = (batch_size, num_channels_latents, height, width)
|
482 |
|
483 |
if latents is None:
|
484 |
-
latents = randn_tensor(
|
|
|
|
|
485 |
else:
|
486 |
if latents.shape != shape:
|
487 |
-
|
|
|
488 |
latents = latents.to(device)
|
489 |
return latents
|
490 |
-
|
491 |
@property
|
492 |
def guidance_scale(self):
|
493 |
return self._guidance_scale
|
494 |
-
|
495 |
@property
|
496 |
def do_classifier_free_guidance(self):
|
497 |
return self._guidance_scale > 1
|
498 |
-
|
499 |
@property
|
500 |
def joint_attention_kwargs(self):
|
501 |
return self._joint_attention_kwargs
|
502 |
-
|
503 |
@property
|
504 |
def num_timesteps(self):
|
505 |
return self._num_timesteps
|
@@ -507,37 +578,39 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
507 |
@property
|
508 |
def interrupt(self):
|
509 |
return self._interrupt
|
510 |
-
|
511 |
@torch.no_grad()
|
512 |
def __call__(
|
513 |
self,
|
514 |
-
prompt:
|
515 |
-
prompt_2:
|
516 |
-
prompt_3:
|
517 |
-
prompt_4:
|
518 |
-
height:
|
519 |
-
width:
|
520 |
num_inference_steps: int = 50,
|
521 |
-
sigmas:
|
522 |
guidance_scale: float = 5.0,
|
523 |
-
negative_prompt:
|
524 |
-
negative_prompt_2:
|
525 |
-
negative_prompt_3:
|
526 |
-
negative_prompt_4:
|
527 |
-
num_images_per_prompt:
|
528 |
-
generator:
|
529 |
-
latents:
|
530 |
-
prompt_embeds:
|
531 |
-
negative_prompt_embeds:
|
532 |
-
pooled_prompt_embeds:
|
533 |
-
negative_pooled_prompt_embeds:
|
534 |
-
output_type:
|
535 |
return_dict: bool = True,
|
536 |
-
joint_attention_kwargs:
|
537 |
-
callback_on_step_end:
|
538 |
-
callback_on_step_end_tensor_inputs:
|
539 |
max_sequence_length: int = 128,
|
540 |
):
|
|
|
|
|
541 |
height = height or self.default_sample_size * self.vae_scale_factor
|
542 |
width = width or self.default_sample_size * self.vae_scale_factor
|
543 |
|
@@ -545,7 +618,10 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
545 |
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
|
546 |
scale = S_max / (width * height)
|
547 |
scale = math.sqrt(scale)
|
548 |
-
width, height =
|
|
|
|
|
|
|
549 |
|
550 |
self._guidance_scale = guidance_scale
|
551 |
self._joint_attention_kwargs = joint_attention_kwargs
|
@@ -562,7 +638,9 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
562 |
device = self._execution_device
|
563 |
|
564 |
lora_scale = (
|
565 |
-
self.joint_attention_kwargs.get("scale", None)
|
|
|
|
|
566 |
)
|
567 |
(
|
568 |
prompt_embeds,
|
@@ -591,13 +669,15 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
591 |
|
592 |
if self.do_classifier_free_guidance:
|
593 |
prompt_embeds_arr = []
|
594 |
-
for n, p in zip(negative_prompt_embeds, prompt_embeds):
|
595 |
if len(n.shape) == 3:
|
596 |
prompt_embeds_arr.append(torch.cat([n, p], dim=0))
|
597 |
else:
|
598 |
prompt_embeds_arr.append(torch.cat([n, p], dim=1))
|
599 |
prompt_embeds = prompt_embeds_arr
|
600 |
-
pooled_prompt_embeds = torch.cat(
|
|
|
|
|
601 |
|
602 |
# 4. Prepare latent variables
|
603 |
num_channels_latents = self.transformer.config.in_channels
|
@@ -614,18 +694,21 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
614 |
|
615 |
if latents.shape[-2] != latents.shape[-1]:
|
616 |
B, C, H, W = latents.shape
|
617 |
-
pH, pW =
|
|
|
|
|
|
|
618 |
|
619 |
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
|
620 |
img_ids = torch.zeros(pH, pW, 3)
|
621 |
-
img_ids[..., 1]
|
622 |
-
img_ids[..., 2]
|
623 |
img_ids = img_ids.reshape(pH * pW, -1)
|
624 |
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
|
625 |
-
img_ids_pad[:pH*pW, :] = img_ids
|
626 |
|
627 |
-
img_sizes = img_sizes.unsqueeze(0).to(latents.device)
|
628 |
-
img_ids = img_ids_pad.unsqueeze(0).to(latents.device)
|
629 |
if self.do_classifier_free_guidance:
|
630 |
img_sizes = img_sizes.repeat(2 * B, 1)
|
631 |
img_ids = img_ids.repeat(2 * B, 1, 1)
|
@@ -636,7 +719,9 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
636 |
mu = calculate_shift(self.transformer.max_seq)
|
637 |
scheduler_kwargs = {"mu": mu}
|
638 |
if isinstance(self.scheduler, FlowUniPCMultistepScheduler):
|
639 |
-
self.scheduler.set_timesteps(
|
|
|
|
|
640 |
timesteps = self.scheduler.timesteps
|
641 |
else:
|
642 |
timesteps, num_inference_steps = retrieve_timesteps(
|
@@ -646,7 +731,9 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
646 |
sigmas=sigmas,
|
647 |
**scheduler_kwargs,
|
648 |
)
|
649 |
-
num_warmup_steps = max(
|
|
|
|
|
650 |
self._num_timesteps = len(timesteps)
|
651 |
|
652 |
# 6. Denoising loop
|
@@ -656,7 +743,11 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
656 |
continue
|
657 |
|
658 |
# expand the latents if we are doing classifier free guidance
|
659 |
-
latent_model_input =
|
|
|
|
|
|
|
|
|
660 |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
661 |
timestep = t.expand(latent_model_input.shape[0])
|
662 |
|
@@ -665,33 +756,42 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
665 |
patch_size = self.transformer.config.patch_size
|
666 |
pH, pW = H // patch_size, W // patch_size
|
667 |
out = torch.zeros(
|
668 |
-
(B, C, self.transformer.max_seq, patch_size * patch_size),
|
669 |
-
dtype=latent_model_input.dtype,
|
670 |
-
device=latent_model_input.device
|
671 |
)
|
672 |
-
latent_model_input = einops.rearrange(
|
673 |
-
|
|
|
|
|
|
|
|
|
|
|
674 |
latent_model_input = out
|
675 |
|
676 |
noise_pred = self.transformer(
|
677 |
-
hidden_states
|
678 |
-
timesteps
|
679 |
-
encoder_hidden_states
|
680 |
-
pooled_embeds
|
681 |
-
img_sizes
|
682 |
-
img_ids
|
683 |
-
return_dict
|
684 |
)[0]
|
685 |
noise_pred = -noise_pred
|
686 |
|
687 |
# perform guidance
|
688 |
if self.do_classifier_free_guidance:
|
689 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
690 |
-
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
|
|
|
|
691 |
|
692 |
# compute the previous noisy sample x_t -> x_t-1
|
693 |
latents_dtype = latents.dtype
|
694 |
-
latents = self.scheduler.step(
|
|
|
|
|
695 |
|
696 |
if latents.dtype != latents_dtype:
|
697 |
if torch.backends.mps.is_available():
|
@@ -706,10 +806,14 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
706 |
|
707 |
latents = callback_outputs.pop("latents", latents)
|
708 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
709 |
-
negative_prompt_embeds = callback_outputs.pop(
|
|
|
|
|
710 |
|
711 |
# call the callback, if provided
|
712 |
-
if i == len(timesteps) - 1 or (
|
|
|
|
|
713 |
progress_bar.update()
|
714 |
|
715 |
if XLA_AVAILABLE:
|
@@ -719,7 +823,9 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
719 |
image = latents
|
720 |
|
721 |
else:
|
722 |
-
latents = (
|
|
|
|
|
723 |
|
724 |
image = self.vae.decode(latents, return_dict=False)[0]
|
725 |
image = self.image_processor.postprocess(image, output_type=output_type)
|
@@ -730,4 +836,4 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
730 |
if not return_dict:
|
731 |
return (image,)
|
732 |
|
733 |
-
return HiDreamImagePipelineOutput(images=image)
|
|
|
1 |
import inspect
|
|
|
2 |
import math
|
3 |
+
from collections.abc import Callable
|
4 |
+
from typing import Any
|
5 |
+
|
6 |
import einops
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from diffusers.image_processor import VaeImageProcessor
|
9 |
from diffusers.loaders import FromSingleFileMixin
|
10 |
from diffusers.models.autoencoders import AutoencoderKL
|
11 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
12 |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
13 |
from diffusers.utils import (
|
|
|
14 |
is_torch_xla_available,
|
15 |
logging,
|
16 |
)
|
17 |
from diffusers.utils.torch_utils import randn_tensor
|
18 |
+
from transformers import (
|
19 |
+
CLIPTextModelWithProjection,
|
20 |
+
CLIPTokenizer,
|
21 |
+
LlamaForCausalLM,
|
22 |
+
PreTrainedTokenizerFast,
|
23 |
+
T5EncoderModel,
|
24 |
+
T5Tokenizer,
|
25 |
+
)
|
26 |
+
|
27 |
+
from ...models.transformers.transformer_hidream_image import (
|
28 |
+
HiDreamImageTransformer2DModel,
|
29 |
+
)
|
30 |
from ...schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
31 |
+
from .pipeline_output import HiDreamImagePipelineOutput
|
32 |
|
33 |
if is_torch_xla_available():
|
34 |
import torch_xla.core.xla_model as xm
|
|
|
39 |
|
40 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
|
42 |
+
|
43 |
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
44 |
def calculate_shift(
|
45 |
image_seq_len,
|
|
|
53 |
mu = image_seq_len * m + b
|
54 |
return mu
|
55 |
|
56 |
+
|
57 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
58 |
def retrieve_timesteps(
|
59 |
scheduler,
|
60 |
+
num_inference_steps: int | None = None,
|
61 |
+
device: str | torch.device | None = None,
|
62 |
+
timesteps: list[int] | None = None,
|
63 |
+
sigmas: list[float] | None = None,
|
64 |
**kwargs,
|
65 |
):
|
66 |
r"""
|
|
|
85 |
Returns:
|
86 |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
87 |
second element is the number of inference steps.
|
88 |
+
|
89 |
"""
|
90 |
if timesteps is not None and sigmas is not None:
|
91 |
+
msg = "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
92 |
+
raise ValueError(msg)
|
93 |
if timesteps is not None:
|
94 |
+
accepts_timesteps = "timesteps" in set(
|
95 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
96 |
+
)
|
97 |
if not accepts_timesteps:
|
98 |
+
msg = (
|
99 |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
100 |
f" timestep schedules. Please check whether you are using the correct scheduler."
|
101 |
)
|
102 |
+
raise ValueError(msg)
|
103 |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
104 |
timesteps = scheduler.timesteps
|
105 |
num_inference_steps = len(timesteps)
|
106 |
elif sigmas is not None:
|
107 |
+
accept_sigmas = "sigmas" in set(
|
108 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
109 |
+
)
|
110 |
if not accept_sigmas:
|
111 |
+
msg = (
|
112 |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
113 |
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
114 |
)
|
115 |
+
raise ValueError(msg)
|
116 |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
117 |
timesteps = scheduler.timesteps
|
118 |
num_inference_steps = len(timesteps)
|
|
|
121 |
timesteps = scheduler.timesteps
|
122 |
return timesteps, num_inference_steps
|
123 |
|
124 |
+
|
125 |
class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
126 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->image_encoder->transformer->vae"
|
127 |
_optional_components = ["image_encoder", "feature_extractor"]
|
|
|
129 |
|
130 |
def __init__(
|
131 |
self,
|
132 |
+
transformer: HiDreamImageTransformer2DModel,
|
133 |
scheduler: FlowMatchEulerDiscreteScheduler,
|
134 |
vae: AutoencoderKL,
|
135 |
text_encoder: CLIPTextModelWithProjection,
|
|
|
144 |
super().__init__()
|
145 |
|
146 |
self.register_modules(
|
147 |
+
transformer=transformer,
|
148 |
vae=vae,
|
149 |
text_encoder=text_encoder,
|
150 |
text_encoder_2=text_encoder_2,
|
|
|
157 |
scheduler=scheduler,
|
158 |
)
|
159 |
self.vae_scale_factor = (
|
160 |
+
2 ** (len(self.vae.config.block_out_channels) - 1)
|
161 |
+
if hasattr(self, "vae") and self.vae is not None
|
162 |
+
else 8
|
163 |
)
|
164 |
# HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
165 |
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
166 |
+
self.image_processor = VaeImageProcessor(
|
167 |
+
vae_scale_factor=self.vae_scale_factor * 2
|
168 |
+
)
|
169 |
self.default_sample_size = 128
|
170 |
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
|
171 |
|
172 |
def _get_t5_prompt_embeds(
|
173 |
self,
|
174 |
+
prompt: str | list[str] | None = None,
|
175 |
num_images_per_prompt: int = 1,
|
176 |
max_sequence_length: int = 128,
|
177 |
+
device: torch.device | None = None,
|
178 |
+
dtype: torch.dtype | None = None,
|
179 |
):
|
180 |
device = device or self._execution_device
|
181 |
dtype = dtype or self.text_encoder_3.dtype
|
|
|
193 |
)
|
194 |
text_input_ids = text_inputs.input_ids
|
195 |
attention_mask = text_inputs.attention_mask
|
196 |
+
untruncated_ids = self.tokenizer_3(
|
197 |
+
prompt, padding="longest", return_tensors="pt"
|
198 |
+
).input_ids
|
199 |
+
|
200 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
201 |
+
text_input_ids, untruncated_ids
|
202 |
+
):
|
203 |
+
removed_text = self.tokenizer_3.batch_decode(
|
204 |
+
untruncated_ids[
|
205 |
+
:,
|
206 |
+
min(max_sequence_length, self.tokenizer_3.model_max_length)
|
207 |
+
- 1 : -1,
|
208 |
+
]
|
209 |
+
)
|
210 |
logger.warning(
|
211 |
"The following part of your input was truncated because `max_sequence_length` is set to "
|
212 |
f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
|
213 |
)
|
214 |
|
215 |
+
prompt_embeds = self.text_encoder_3(
|
216 |
+
text_input_ids.to(device), attention_mask=attention_mask.to(device)
|
217 |
+
)[0]
|
218 |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
219 |
_, seq_len, _ = prompt_embeds.shape
|
220 |
|
221 |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
222 |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
223 |
+
prompt_embeds = prompt_embeds.view(
|
224 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
225 |
+
)
|
226 |
return prompt_embeds
|
227 |
+
|
228 |
def _get_clip_prompt_embeds(
|
229 |
self,
|
230 |
tokenizer,
|
231 |
text_encoder,
|
232 |
+
prompt: str | list[str],
|
233 |
num_images_per_prompt: int = 1,
|
234 |
max_sequence_length: int = 128,
|
235 |
+
device: torch.device | None = None,
|
236 |
+
dtype: torch.dtype | None = None,
|
237 |
):
|
238 |
device = device or self._execution_device
|
239 |
dtype = dtype or text_encoder.dtype
|
|
|
250 |
)
|
251 |
|
252 |
text_input_ids = text_inputs.input_ids
|
253 |
+
untruncated_ids = tokenizer(
|
254 |
+
prompt, padding="longest", return_tensors="pt"
|
255 |
+
).input_ids
|
256 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
257 |
+
text_input_ids, untruncated_ids
|
258 |
+
):
|
259 |
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
|
260 |
logger.warning(
|
261 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
262 |
f" {218} tokens: {removed_text}"
|
263 |
)
|
264 |
+
prompt_embeds = text_encoder(
|
265 |
+
text_input_ids.to(device), output_hidden_states=True
|
266 |
+
)
|
267 |
|
268 |
# Use pooled output of CLIPTextModel
|
269 |
prompt_embeds = prompt_embeds[0]
|
|
|
274 |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
275 |
|
276 |
return prompt_embeds
|
277 |
+
|
278 |
def _get_llama3_prompt_embeds(
|
279 |
self,
|
280 |
+
prompt: str | list[str] | None = None,
|
281 |
num_images_per_prompt: int = 1,
|
282 |
max_sequence_length: int = 128,
|
283 |
+
device: torch.device | None = None,
|
284 |
+
dtype: torch.dtype | None = None,
|
285 |
):
|
286 |
device = device or self._execution_device
|
287 |
dtype = dtype or self.text_encoder_4.dtype
|
|
|
299 |
)
|
300 |
text_input_ids = text_inputs.input_ids
|
301 |
attention_mask = text_inputs.attention_mask
|
302 |
+
untruncated_ids = self.tokenizer_4(
|
303 |
+
prompt, padding="longest", return_tensors="pt"
|
304 |
+
).input_ids
|
305 |
+
|
306 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
307 |
+
text_input_ids, untruncated_ids
|
308 |
+
):
|
309 |
+
removed_text = self.tokenizer_4.batch_decode(
|
310 |
+
untruncated_ids[
|
311 |
+
:,
|
312 |
+
min(max_sequence_length, self.tokenizer_4.model_max_length)
|
313 |
+
- 1 : -1,
|
314 |
+
]
|
315 |
+
)
|
316 |
logger.warning(
|
317 |
"The following part of your input was truncated because `max_sequence_length` is set to "
|
318 |
f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
|
319 |
)
|
320 |
|
321 |
outputs = self.text_encoder_4(
|
322 |
+
text_input_ids.to(device),
|
323 |
+
attention_mask=attention_mask.to(device),
|
324 |
output_hidden_states=True,
|
325 |
+
output_attentions=True,
|
326 |
)
|
327 |
|
328 |
prompt_embeds = outputs.hidden_states[1:]
|
|
|
331 |
|
332 |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
333 |
prompt_embeds = prompt_embeds.repeat(1, 1, num_images_per_prompt, 1)
|
334 |
+
prompt_embeds = prompt_embeds.view(
|
335 |
+
-1, batch_size * num_images_per_prompt, seq_len, dim
|
336 |
+
)
|
337 |
return prompt_embeds
|
338 |
+
|
339 |
def encode_prompt(
|
340 |
self,
|
341 |
+
prompt: str | list[str],
|
342 |
+
prompt_2: str | list[str],
|
343 |
+
prompt_3: str | list[str],
|
344 |
+
prompt_4: str | list[str],
|
345 |
+
device: torch.device | None = None,
|
346 |
+
dtype: torch.dtype | None = None,
|
347 |
num_images_per_prompt: int = 1,
|
348 |
do_classifier_free_guidance: bool = True,
|
349 |
+
negative_prompt: str | list[str] | None = None,
|
350 |
+
negative_prompt_2: str | list[str] | None = None,
|
351 |
+
negative_prompt_3: str | list[str] | None = None,
|
352 |
+
negative_prompt_4: str | list[str] | None = None,
|
353 |
+
prompt_embeds: list[torch.FloatTensor] | None = None,
|
354 |
+
negative_prompt_embeds: torch.FloatTensor | None = None,
|
355 |
+
pooled_prompt_embeds: torch.FloatTensor | None = None,
|
356 |
+
negative_pooled_prompt_embeds: torch.FloatTensor | None = None,
|
357 |
max_sequence_length: int = 128,
|
358 |
+
lora_scale: float | None = None,
|
359 |
):
|
360 |
prompt = [prompt] if isinstance(prompt, str) else prompt
|
361 |
+
batch_size = len(prompt) if prompt is not None else prompt_embeds.shape[0]
|
|
|
|
|
|
|
362 |
|
363 |
prompt_embeds, pooled_prompt_embeds = self._encode_prompt(
|
364 |
+
prompt=prompt,
|
365 |
+
prompt_2=prompt_2,
|
366 |
+
prompt_3=prompt_3,
|
367 |
+
prompt_4=prompt_4,
|
368 |
+
device=device,
|
369 |
+
dtype=dtype,
|
370 |
+
num_images_per_prompt=num_images_per_prompt,
|
371 |
+
prompt_embeds=prompt_embeds,
|
372 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
373 |
+
max_sequence_length=max_sequence_length,
|
374 |
)
|
375 |
|
376 |
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
|
380 |
negative_prompt_4 = negative_prompt_4 or negative_prompt
|
381 |
|
382 |
# normalize str to list
|
383 |
+
negative_prompt = (
|
384 |
+
batch_size * [negative_prompt]
|
385 |
+
if isinstance(negative_prompt, str)
|
386 |
+
else negative_prompt
|
387 |
+
)
|
388 |
negative_prompt_2 = (
|
389 |
+
batch_size * [negative_prompt_2]
|
390 |
+
if isinstance(negative_prompt_2, str)
|
391 |
+
else negative_prompt_2
|
392 |
)
|
393 |
negative_prompt_3 = (
|
394 |
+
batch_size * [negative_prompt_3]
|
395 |
+
if isinstance(negative_prompt_3, str)
|
396 |
+
else negative_prompt_3
|
397 |
)
|
398 |
negative_prompt_4 = (
|
399 |
+
batch_size * [negative_prompt_4]
|
400 |
+
if isinstance(negative_prompt_4, str)
|
401 |
+
else negative_prompt_4
|
402 |
)
|
403 |
|
404 |
if prompt is not None and type(prompt) is not type(negative_prompt):
|
405 |
+
msg = (
|
406 |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
407 |
f" {type(prompt)}."
|
408 |
)
|
409 |
+
raise TypeError(msg)
|
410 |
+
if batch_size != len(negative_prompt):
|
411 |
+
msg = (
|
412 |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
413 |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
414 |
" the batch size of `prompt`."
|
415 |
)
|
416 |
+
raise ValueError(msg)
|
417 |
+
|
418 |
negative_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt(
|
419 |
+
prompt=negative_prompt,
|
420 |
+
prompt_2=negative_prompt_2,
|
421 |
+
prompt_3=negative_prompt_3,
|
422 |
+
prompt_4=negative_prompt_4,
|
423 |
+
device=device,
|
424 |
+
dtype=dtype,
|
425 |
+
num_images_per_prompt=num_images_per_prompt,
|
426 |
+
prompt_embeds=negative_prompt_embeds,
|
427 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
428 |
+
max_sequence_length=max_sequence_length,
|
429 |
)
|
430 |
+
return (
|
431 |
+
prompt_embeds,
|
432 |
+
negative_prompt_embeds,
|
433 |
+
pooled_prompt_embeds,
|
434 |
+
negative_pooled_prompt_embeds,
|
435 |
+
)
|
436 |
|
437 |
def _encode_prompt(
|
438 |
self,
|
439 |
+
prompt: str | list[str],
|
440 |
+
prompt_2: str | list[str],
|
441 |
+
prompt_3: str | list[str],
|
442 |
+
prompt_4: str | list[str],
|
443 |
+
device: torch.device | None = None,
|
444 |
+
dtype: torch.dtype | None = None,
|
445 |
num_images_per_prompt: int = 1,
|
446 |
+
prompt_embeds: list[torch.FloatTensor] | None = None,
|
447 |
+
pooled_prompt_embeds: torch.FloatTensor | None = None,
|
448 |
max_sequence_length: int = 128,
|
449 |
):
|
450 |
device = device or self._execution_device
|
451 |
+
|
452 |
if prompt_embeds is None:
|
453 |
prompt_2 = prompt_2 or prompt
|
454 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
462 |
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
463 |
self.tokenizer,
|
464 |
self.text_encoder,
|
465 |
+
prompt=prompt,
|
466 |
+
num_images_per_prompt=num_images_per_prompt,
|
467 |
+
max_sequence_length=max_sequence_length,
|
468 |
+
device=device,
|
469 |
+
dtype=dtype,
|
470 |
)
|
471 |
|
472 |
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
473 |
self.tokenizer_2,
|
474 |
self.text_encoder_2,
|
475 |
+
prompt=prompt_2,
|
476 |
+
num_images_per_prompt=num_images_per_prompt,
|
477 |
+
max_sequence_length=max_sequence_length,
|
478 |
+
device=device,
|
479 |
+
dtype=dtype,
|
480 |
)
|
481 |
|
482 |
+
pooled_prompt_embeds = torch.cat(
|
483 |
+
[pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1
|
484 |
+
)
|
485 |
|
486 |
t5_prompt_embeds = self._get_t5_prompt_embeds(
|
487 |
+
prompt=prompt_3,
|
488 |
+
num_images_per_prompt=num_images_per_prompt,
|
489 |
+
max_sequence_length=max_sequence_length,
|
490 |
+
device=device,
|
491 |
+
dtype=dtype,
|
492 |
)
|
493 |
llama3_prompt_embeds = self._get_llama3_prompt_embeds(
|
494 |
+
prompt=prompt_4,
|
495 |
+
num_images_per_prompt=num_images_per_prompt,
|
496 |
+
max_sequence_length=max_sequence_length,
|
497 |
+
device=device,
|
498 |
+
dtype=dtype,
|
499 |
)
|
500 |
prompt_embeds = [t5_prompt_embeds, llama3_prompt_embeds]
|
501 |
|
|
|
549 |
shape = (batch_size, num_channels_latents, height, width)
|
550 |
|
551 |
if latents is None:
|
552 |
+
latents = randn_tensor(
|
553 |
+
shape, generator=generator, device=device, dtype=dtype
|
554 |
+
)
|
555 |
else:
|
556 |
if latents.shape != shape:
|
557 |
+
msg = f"Unexpected latents shape, got {latents.shape}, expected {shape}"
|
558 |
+
raise ValueError(msg)
|
559 |
latents = latents.to(device)
|
560 |
return latents
|
561 |
+
|
562 |
@property
|
563 |
def guidance_scale(self):
|
564 |
return self._guidance_scale
|
565 |
+
|
566 |
@property
|
567 |
def do_classifier_free_guidance(self):
|
568 |
return self._guidance_scale > 1
|
569 |
+
|
570 |
@property
|
571 |
def joint_attention_kwargs(self):
|
572 |
return self._joint_attention_kwargs
|
573 |
+
|
574 |
@property
|
575 |
def num_timesteps(self):
|
576 |
return self._num_timesteps
|
|
|
578 |
@property
|
579 |
def interrupt(self):
|
580 |
return self._interrupt
|
581 |
+
|
582 |
@torch.no_grad()
|
583 |
def __call__(
|
584 |
self,
|
585 |
+
prompt: str | list[str] | None = None,
|
586 |
+
prompt_2: str | list[str] | None = None,
|
587 |
+
prompt_3: str | list[str] | None = None,
|
588 |
+
prompt_4: str | list[str] | None = None,
|
589 |
+
height: int | None = None,
|
590 |
+
width: int | None = None,
|
591 |
num_inference_steps: int = 50,
|
592 |
+
sigmas: list[float] | None = None,
|
593 |
guidance_scale: float = 5.0,
|
594 |
+
negative_prompt: str | list[str] | None = None,
|
595 |
+
negative_prompt_2: str | list[str] | None = None,
|
596 |
+
negative_prompt_3: str | list[str] | None = None,
|
597 |
+
negative_prompt_4: str | list[str] | None = None,
|
598 |
+
num_images_per_prompt: int | None = 1,
|
599 |
+
generator: torch.Generator | list[torch.Generator] | None = None,
|
600 |
+
latents: torch.FloatTensor | None = None,
|
601 |
+
prompt_embeds: torch.FloatTensor | None = None,
|
602 |
+
negative_prompt_embeds: torch.FloatTensor | None = None,
|
603 |
+
pooled_prompt_embeds: torch.FloatTensor | None = None,
|
604 |
+
negative_pooled_prompt_embeds: torch.FloatTensor | None = None,
|
605 |
+
output_type: str | None = "pil",
|
606 |
return_dict: bool = True,
|
607 |
+
joint_attention_kwargs: dict[str, Any] | None = None,
|
608 |
+
callback_on_step_end: Callable[[int, int, dict], None] | None = None,
|
609 |
+
callback_on_step_end_tensor_inputs: list[str] | None = None,
|
610 |
max_sequence_length: int = 128,
|
611 |
):
|
612 |
+
if callback_on_step_end_tensor_inputs is None:
|
613 |
+
callback_on_step_end_tensor_inputs = ["latents"]
|
614 |
height = height or self.default_sample_size * self.vae_scale_factor
|
615 |
width = width or self.default_sample_size * self.vae_scale_factor
|
616 |
|
|
|
618 |
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
|
619 |
scale = S_max / (width * height)
|
620 |
scale = math.sqrt(scale)
|
621 |
+
width, height = (
|
622 |
+
int(width * scale // division * division),
|
623 |
+
int(height * scale // division * division),
|
624 |
+
)
|
625 |
|
626 |
self._guidance_scale = guidance_scale
|
627 |
self._joint_attention_kwargs = joint_attention_kwargs
|
|
|
638 |
device = self._execution_device
|
639 |
|
640 |
lora_scale = (
|
641 |
+
self.joint_attention_kwargs.get("scale", None)
|
642 |
+
if self.joint_attention_kwargs is not None
|
643 |
+
else None
|
644 |
)
|
645 |
(
|
646 |
prompt_embeds,
|
|
|
669 |
|
670 |
if self.do_classifier_free_guidance:
|
671 |
prompt_embeds_arr = []
|
672 |
+
for n, p in zip(negative_prompt_embeds, prompt_embeds, strict=False):
|
673 |
if len(n.shape) == 3:
|
674 |
prompt_embeds_arr.append(torch.cat([n, p], dim=0))
|
675 |
else:
|
676 |
prompt_embeds_arr.append(torch.cat([n, p], dim=1))
|
677 |
prompt_embeds = prompt_embeds_arr
|
678 |
+
pooled_prompt_embeds = torch.cat(
|
679 |
+
[negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0
|
680 |
+
)
|
681 |
|
682 |
# 4. Prepare latent variables
|
683 |
num_channels_latents = self.transformer.config.in_channels
|
|
|
694 |
|
695 |
if latents.shape[-2] != latents.shape[-1]:
|
696 |
B, C, H, W = latents.shape
|
697 |
+
pH, pW = (
|
698 |
+
H // self.transformer.config.patch_size,
|
699 |
+
W // self.transformer.config.patch_size,
|
700 |
+
)
|
701 |
|
702 |
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
|
703 |
img_ids = torch.zeros(pH, pW, 3)
|
704 |
+
img_ids[..., 1] += torch.arange(pH)[:, None]
|
705 |
+
img_ids[..., 2] += torch.arange(pW)[None, :]
|
706 |
img_ids = img_ids.reshape(pH * pW, -1)
|
707 |
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
|
708 |
+
img_ids_pad[: pH * pW, :] = img_ids
|
709 |
|
710 |
+
img_sizes = img_sizes.unsqueeze(0).to(latents.device)
|
711 |
+
img_ids = img_ids_pad.unsqueeze(0).to(latents.device)
|
712 |
if self.do_classifier_free_guidance:
|
713 |
img_sizes = img_sizes.repeat(2 * B, 1)
|
714 |
img_ids = img_ids.repeat(2 * B, 1, 1)
|
|
|
719 |
mu = calculate_shift(self.transformer.max_seq)
|
720 |
scheduler_kwargs = {"mu": mu}
|
721 |
if isinstance(self.scheduler, FlowUniPCMultistepScheduler):
|
722 |
+
self.scheduler.set_timesteps(
|
723 |
+
num_inference_steps, device=device, shift=math.exp(mu)
|
724 |
+
)
|
725 |
timesteps = self.scheduler.timesteps
|
726 |
else:
|
727 |
timesteps, num_inference_steps = retrieve_timesteps(
|
|
|
731 |
sigmas=sigmas,
|
732 |
**scheduler_kwargs,
|
733 |
)
|
734 |
+
num_warmup_steps = max(
|
735 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
736 |
+
)
|
737 |
self._num_timesteps = len(timesteps)
|
738 |
|
739 |
# 6. Denoising loop
|
|
|
743 |
continue
|
744 |
|
745 |
# expand the latents if we are doing classifier free guidance
|
746 |
+
latent_model_input = (
|
747 |
+
torch.cat([latents] * 2)
|
748 |
+
if self.do_classifier_free_guidance
|
749 |
+
else latents
|
750 |
+
)
|
751 |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
752 |
timestep = t.expand(latent_model_input.shape[0])
|
753 |
|
|
|
756 |
patch_size = self.transformer.config.patch_size
|
757 |
pH, pW = H // patch_size, W // patch_size
|
758 |
out = torch.zeros(
|
759 |
+
(B, C, self.transformer.max_seq, patch_size * patch_size),
|
760 |
+
dtype=latent_model_input.dtype,
|
761 |
+
device=latent_model_input.device,
|
762 |
)
|
763 |
+
latent_model_input = einops.rearrange(
|
764 |
+
latent_model_input,
|
765 |
+
"B C (H p1) (W p2) -> B C (H W) (p1 p2)",
|
766 |
+
p1=patch_size,
|
767 |
+
p2=patch_size,
|
768 |
+
)
|
769 |
+
out[:, :, 0 : pH * pW] = latent_model_input
|
770 |
latent_model_input = out
|
771 |
|
772 |
noise_pred = self.transformer(
|
773 |
+
hidden_states=latent_model_input,
|
774 |
+
timesteps=timestep,
|
775 |
+
encoder_hidden_states=prompt_embeds,
|
776 |
+
pooled_embeds=pooled_prompt_embeds,
|
777 |
+
img_sizes=img_sizes,
|
778 |
+
img_ids=img_ids,
|
779 |
+
return_dict=False,
|
780 |
)[0]
|
781 |
noise_pred = -noise_pred
|
782 |
|
783 |
# perform guidance
|
784 |
if self.do_classifier_free_guidance:
|
785 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
786 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
787 |
+
noise_pred_text - noise_pred_uncond
|
788 |
+
)
|
789 |
|
790 |
# compute the previous noisy sample x_t -> x_t-1
|
791 |
latents_dtype = latents.dtype
|
792 |
+
latents = self.scheduler.step(
|
793 |
+
noise_pred, t, latents, return_dict=False
|
794 |
+
)[0]
|
795 |
|
796 |
if latents.dtype != latents_dtype:
|
797 |
if torch.backends.mps.is_available():
|
|
|
806 |
|
807 |
latents = callback_outputs.pop("latents", latents)
|
808 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
809 |
+
negative_prompt_embeds = callback_outputs.pop(
|
810 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
811 |
+
)
|
812 |
|
813 |
# call the callback, if provided
|
814 |
+
if i == len(timesteps) - 1 or (
|
815 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
816 |
+
):
|
817 |
progress_bar.update()
|
818 |
|
819 |
if XLA_AVAILABLE:
|
|
|
823 |
image = latents
|
824 |
|
825 |
else:
|
826 |
+
latents = (
|
827 |
+
latents / self.vae.config.scaling_factor
|
828 |
+
) + self.vae.config.shift_factor
|
829 |
|
830 |
image = self.vae.decode(latents, return_dict=False)[0]
|
831 |
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
836 |
if not return_dict:
|
837 |
return (image,)
|
838 |
|
839 |
+
return HiDreamImagePipelineOutput(images=image)
|