attilasimko commited on
Commit
7a8d600
·
1 Parent(s): dc5f58b

readme file loading#

Browse files
evaluations/models.py CHANGED
@@ -3,7 +3,7 @@ from huggingface_hub import InferenceClient
3
  import os
4
 
5
  system_messages = { "STRICT": "You are a chatbot evaluating github repositories, their python codes and corresponding readme files. Strictly answer the questions with Yes or No.",
6
- "HELP": "You are a chatbot evaluating github repositories, their python codes and corresponding readme files. Please help me answer the following question." }
7
 
8
  class LocalLLM():
9
  def __init__(self, model_name):
@@ -33,4 +33,4 @@ class RemoteLLM():
33
  model=self.model_name, max_tokens=500, stream=False,
34
  messages=[{"role": "system", "content": system_messages[response_type]},
35
  {"role": "user", "content": prompt}])
36
- return message['choices'][0]
 
3
  import os
4
 
5
  system_messages = { "STRICT": "You are a chatbot evaluating github repositories, their python codes and corresponding readme files. Strictly answer the questions with Yes or No.",
6
+ "HELP": "You are a chatbot evaluating github repositories, their python codes and corresponding readme files. Please help me answer the following question. Keep your answers short, and informative." }
7
 
8
  class LocalLLM():
9
  def __init__(self, model_name):
 
33
  model=self.model_name, max_tokens=500, stream=False,
34
  messages=[{"role": "system", "content": system_messages[response_type]},
35
  {"role": "user", "content": prompt}])
36
+ return message['choices'][0]['message']['content']
evaluations/repo_evaluations.py CHANGED
@@ -41,9 +41,9 @@ def evaluate(llm, verbose, repo_url, title=None, year=None):
41
 
42
  zip = zipfile.ZipFile(repository_zip_name)
43
  readme = fetch_readme(zip)
44
-
45
- if (llm):
46
- summary = llm.predict("HELP", "{readme}\nBased on the readme file above can you give a quick summary of this repository?")
47
  log(verbose, "LOG", f"Summary: {summary}")
48
 
49
  results["pred_stars"] = fetch_repo_stars(verbose, repo_url, token)
 
41
 
42
  zip = zipfile.ZipFile(repository_zip_name)
43
  readme = fetch_readme(zip)
44
+
45
+ if ((readme != "") & llm):
46
+ summary = llm.predict("HELP", f"{readme}\nBased on the readme file above can you give a quick summary of this repository?")
47
  log(verbose, "LOG", f"Summary: {summary}")
48
 
49
  results["pred_stars"] = fetch_repo_stars(verbose, repo_url, token)