Spaces:
Sleeping
Sleeping
import csv | |
import numpy as np | |
import pandas as pd | |
import re | |
current_year = 2024 | |
MIDL_years = range(2018, current_year + 1, 1) | |
custom_order = ["MICCAI", "MIDL", "Nature", "arXiv"] | |
for venue in custom_order: | |
df = pd.read_excel("https://docs.google.com/spreadsheets/d/e/2PACX-1vQjpsSYcEcYUVB-88bCQ01UfQf0z9m16ax7p1ft03G68Nr-DdXHpPt-xOFSrXFj1N49AjK5nYhmKBfo/pub?output=xlsx", sheet_name=venue) | |
df.to_csv(f'data/{venue}.csv', sep="\t") | |
# Store all evaluations here | |
paper_dump = pd.DataFrame() | |
# Official color codes for conferences | |
MIDL_colors = ["#506775", "#4E7268", "#5170B1", "#004B5A", "#268BCC", "#B18630", "#AA0000"] | |
for venue in custom_order: | |
with open(f'data/{venue}.csv') as file: | |
tsv_file = csv.reader(file, delimiter="\t") | |
for row in tsv_file: | |
if (row[0] == ""): | |
continue | |
if (row[1] == ""): | |
continue | |
paper_dump = pd.concat([paper_dump, pd.DataFrame({"venue": venue, "title": [row[1]], "year": [row[2]], "pdf": [row[3]], "url": [row[4]], "public": [row[5]], "dependencies": [row[6]], "training": [row[7]], "evaluation": [row[8]], "weights": [row[9]], "readme": [row[10]], "license": [row[11]]})], ignore_index=True) | |
paper_dump.to_csv(f'data/dump.csv', sep="\t") |