File size: 6,518 Bytes
77f290b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b048432
77f290b
 
 
 
 
 
 
 
 
 
 
 
 
b048432
 
 
 
 
 
 
 
77f290b
 
 
b048432
77f290b
 
 
 
 
 
 
 
 
b048432
77f290b
 
 
b048432
77f290b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18fe2e4
77f290b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import pandas as pd
import os
from evaluations import documentation, requirements, training, validating, license, weights
from evaluations.utils import *
import zipfile
import os
import numpy as np
from huggingface_hub import InferenceClient

API_URL = "https://api-inference.huggingface.co/models/openlm-research/open_llama_3b_v2"
headers = {"Authorization": "Bearer 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", "x-wait-for-model": "true"}


client = InferenceClient(
    "meta-llama/Llama-3.1-8B-Instruct",
    token="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",
)

def init_llm(verbose):
  log(verbose, "LOG", "Initializing LLM...")

def evaluate(llm, verbose, repo_url, title=None, year=None):
  repository_zip_name = "data/repo.zip"
  token = os.getenv("githubToken")
  # token = userdata.get('githubToken')

  if (llm):
      init_llm(verbose)
  else:
      log(verbose, "LOG", "No LLM will be used for the evaluation.")

  results = { "pred_live": "Yes", "pred_dependencies": None, "pred_training": None, "pred_evaluation": None, "pred_weights": None, "pred_readme": None, "pred_license": None, "pred_stars": None, "pred_citations": None, "pred_valid": False}

  try:
      if (get_api_link(repo_url) != ""):
          results["pred_valid"] = True
      else:
          results["pred_live"] = "No"
          results["pred_training"] = "No"
          results["pred_evaluation"] = "No"
          results["pred_weights"] = "No"
          results["pred_packages"] = "No"
          return results

      username, repo_name = decompose_url(repo_url)
      log(verbose, "LOG", f"Fetching github repository: https://github.com/{username}/{repo_name}")

      fetch_repo(verbose, repo_url, repository_zip_name, token)

      if ((title != None) & (year != None) & (title != "") & (year != "")):
          res = fetch_openalex(verbose, title, year)
          if (res != None):
              res = res["results"]
              if (len(res) > 0):
                  res = res[0]
                  results["pred_citations"] = res["cited_by_count"]

      if (not(os.path.exists(repository_zip_name))):
          results["pred_live"] = "No"
          return results

      zip = zipfile.ZipFile(repository_zip_name)
      readme = fetch_readme(zip)
      results["pred_stars"] = fetch_repo_stars(verbose, repo_url, token)


      if (len(zip.namelist()) <= 2):
          log(verbose, "LOG", "Empty repository")
          results["pred_live"] = "No"
          results["pred_training"] = "No"
          results["pred_evaluation"] = "No"
          results["pred_weights"] = "No"
          results["pred_packages"] = "No"
      else:
          results["pred_dependencies"] = requirements.evaluate(verbose, llm, zip, readme)
          results["pred_training"] = training.evaluate(verbose, llm, zip, readme)
          results["pred_evaluation"] = validating.evaluate(verbose, llm, zip, readme)
          results["pred_weights"] = weights.evaluate(verbose, llm, zip, readme)
          results["pred_readme"] = documentation.evaluate(verbose, llm, zip, readme)
          results["pred_codetocomment"] = documentation.get_code_to_comment_ratio(zip)
          results["pred_license"] = license.evaluate(verbose, llm, zip, readme)

      return results
  except Exception as e:
      log(verbose, "ERROR", "Evaluating repository failed: " + str(e))
      results["pred_live"] = "No"
      return results

def full_evaluations():
  paper_dump = pd.read_csv("data/dump.csv", sep="\t")
  repro = evaluate(None, False)
  full_results = []

  nth = 1
  for idx, row in paper_dump.iterrows():
      if (idx % nth != 0):
          continue

      if (row["url"] == ""):
          continue

      print(str(int(100 * idx / paper_dump["title"].count())) + "% done")
      result = evaluate(None, False, row["url"], row["title"], row["year"])
      for column in result.keys():
          row[column] = result[column]

      full_results.append(row)

def midl_evaluations():
  compare_to_gt = True
  paper_dump = pd.read_csv("data/dump.csv", sep="\t")
  verbose = 1

  eval_readme = []
  eval_training = []
  eval_evaluating = []
  eval_licensing = []
  eval_weights = []
  eval_dependencies = []
  full_results = []
  for idx, row in paper_dump.iterrows():
      if (row["venue"] != "MIDL"):
          continue

      if (row["venue"] == 2024):
          continue

      if (pd.isna(row["url"]) | (row["url"] == "")):
          continue


      print(f"\nEvaluating {idx+1} out of {len(paper_dump.index)} papers...")
      print(f'Paper title - "{row["title"]}" ({row["year"]})')
      print(f'Repository link - {row["url"]}')
      result = evaluate(None, verbose, row["url"])
      for column in result.keys():
          row[column] = result[column]
      full_results.append(row)
      if (compare_to_gt):
          print("\nSummary:")
          if ((row["pred_dependencies"] is not None) & (row["dependencies"] != "")):
              eval_dependencies.append(row["pred_dependencies"] == row["dependencies"])
              print(f"Dependencies acc. - {row['pred_dependencies']} (GT:{row['dependencies']}) / {int(100 * np.mean(eval_dependencies))}%")
          if ((row["pred_training"] is not None) & (row["training"] != "")):
              eval_training.append(row["training"] == row["pred_training"])
              print(f"Training acc. -{row['pred_training']} (GT:{row['training']}) / {int(100 * np.mean(eval_training))}%")
          if ((row["pred_evaluation"] is not None) & (row["evaluation"] != "")):
              eval_evaluating.append(row["evaluation"] == row["pred_evaluation"])
              print(f"Evaluating acc. - {row['pred_evaluation']} (GT:{row['evaluation']}) / {int(100 * np.mean(eval_evaluating))}%")
          if ((row["pred_weights"] is not None) & (row["weights"] != "")):
              eval_weights.append(row["weights"] == row["pred_weights"])
              print(f"Weights acc. - {row['pred_weights']} (GT:{row['weights']}) / {int(100 * np.mean(eval_weights))}%")
          if ((row["pred_readme"] is not None) & (row["readme"] != "")):
              eval_readme.append(row["readme"] == row["pred_readme"])
              print(f"README acc. - {row['pred_readme']} (GT:{row['readme']}) / {int(100 * np.mean(eval_readme))}%")
          if ((row["pred_license"] is not None) & (row["license"] != "")):
              eval_licensing.append(("No" if row["license"] == "No" else "Yes") == row["pred_license"])
              print(f"LICENSE acc. - {row['pred_license']} (GT:{row['license']}) / {int(100 * np.mean(eval_licensing))}%")