Ubuntu
commited on
Commit
·
b507cf2
1
Parent(s):
ace32a8
GRPO working
Browse files
GRPO.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from datasets import load_dataset, Dataset
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
from trl import GRPOConfig, GRPOTrainer
|
|
|
4 |
import torch
|
5 |
import os
|
6 |
from collections import defaultdict
|
@@ -62,6 +63,10 @@ for tree_id, msgs in conversations.items():
|
|
62 |
# Convert to Hugging Face dataset format for preference learning
|
63 |
preference_dataset = Dataset.from_list(pairs)
|
64 |
|
|
|
|
|
|
|
|
|
65 |
print(f"Created {len(preference_dataset)} preference pairs for GRPO")
|
66 |
|
67 |
# Debug: Print a sample pair if available
|
@@ -73,30 +78,51 @@ if len(preference_dataset) > 0:
|
|
73 |
else:
|
74 |
print("WARNING: No preference pairs were created. Check the dataset structure.")
|
75 |
|
76 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
model_name = "microsoft/phi-2"
|
78 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
79 |
model = AutoModelForCausalLM.from_pretrained(
|
80 |
model_name,
|
81 |
-
|
82 |
device_map="auto"
|
83 |
)
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
# Configure tokenizer for chat format
|
91 |
tokenizer.pad_token = tokenizer.eos_token
|
92 |
tokenizer.padding_side = "left"
|
93 |
|
|
|
|
|
|
|
|
|
94 |
# Configure GRPO training
|
95 |
training_args = GRPOConfig(
|
96 |
-
output_dir="phi2-grpo-
|
97 |
-
num_train_epochs=3
|
98 |
per_device_train_batch_size=2,
|
99 |
-
gradient_accumulation_steps=16
|
100 |
gradient_checkpointing=True,
|
101 |
learning_rate=5e-6,
|
102 |
logging_steps=10,
|
@@ -107,11 +133,18 @@ training_args = GRPOConfig(
|
|
107 |
optim="adamw_torch",
|
108 |
lr_scheduler_type="cosine",
|
109 |
warmup_ratio=0.1,
|
110 |
-
num_generations=2,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
)
|
112 |
|
113 |
-
|
114 |
-
# Initialize the GRPO trainer with preference dataset
|
115 |
trainer = GRPOTrainer(
|
116 |
model=model,
|
117 |
args=training_args,
|
@@ -126,4 +159,4 @@ trainer.tokenizer = tokenizer
|
|
126 |
trainer.train()
|
127 |
|
128 |
# Save the final model
|
129 |
-
trainer.save_model("phi2-grpo-
|
|
|
1 |
from datasets import load_dataset, Dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
from trl import GRPOConfig, GRPOTrainer
|
4 |
+
from peft import LoraConfig, get_peft_model
|
5 |
import torch
|
6 |
import os
|
7 |
from collections import defaultdict
|
|
|
63 |
# Convert to Hugging Face dataset format for preference learning
|
64 |
preference_dataset = Dataset.from_list(pairs)
|
65 |
|
66 |
+
# Limit dataset size to speed up training (use first 1000 examples)
|
67 |
+
if len(preference_dataset) > 1000:
|
68 |
+
preference_dataset = preference_dataset.select(range(1000))
|
69 |
+
|
70 |
print(f"Created {len(preference_dataset)} preference pairs for GRPO")
|
71 |
|
72 |
# Debug: Print a sample pair if available
|
|
|
78 |
else:
|
79 |
print("WARNING: No preference pairs were created. Check the dataset structure.")
|
80 |
|
81 |
+
# Configure quantization for loading the model
|
82 |
+
quantization_config = BitsAndBytesConfig(
|
83 |
+
load_in_4bit=True,
|
84 |
+
bnb_4bit_compute_dtype=torch.float16,
|
85 |
+
bnb_4bit_quant_type="nf4",
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Load model and tokenizer with quantization
|
90 |
model_name = "microsoft/phi-2"
|
91 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
92 |
model = AutoModelForCausalLM.from_pretrained(
|
93 |
model_name,
|
94 |
+
quantization_config=quantization_config,
|
95 |
device_map="auto"
|
96 |
)
|
97 |
|
98 |
+
# Configure LoRA
|
99 |
+
peft_config = LoraConfig(
|
100 |
+
r=16, # Rank
|
101 |
+
lora_alpha=32, # Alpha parameter for LoRA scaling
|
102 |
+
lora_dropout=0.05, # Dropout probability for LoRA layers
|
103 |
+
bias="none", # Bias type for LoRA
|
104 |
+
task_type="CAUSAL_LM", # Task type
|
105 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
106 |
+
)
|
107 |
+
|
108 |
+
# Apply LoRA to the model
|
109 |
+
model = get_peft_model(model, peft_config)
|
110 |
+
model.print_trainable_parameters() # Print trainable parameters info
|
111 |
|
112 |
# Configure tokenizer for chat format
|
113 |
tokenizer.pad_token = tokenizer.eos_token
|
114 |
tokenizer.padding_side = "left"
|
115 |
|
116 |
+
# Define a reward function that rewards helpful, concise responses
|
117 |
+
def reward_func(completions, **kwargs):
|
118 |
+
return [len(c.split()) for c in completions] # reward by word count
|
119 |
+
|
120 |
# Configure GRPO training
|
121 |
training_args = GRPOConfig(
|
122 |
+
output_dir="phi2-grpo-qlora",
|
123 |
+
num_train_epochs=1, # Reduced from 3 to 1
|
124 |
per_device_train_batch_size=2,
|
125 |
+
gradient_accumulation_steps=4, # Reduced from 16 to 4
|
126 |
gradient_checkpointing=True,
|
127 |
learning_rate=5e-6,
|
128 |
logging_steps=10,
|
|
|
133 |
optim="adamw_torch",
|
134 |
lr_scheduler_type="cosine",
|
135 |
warmup_ratio=0.1,
|
136 |
+
num_generations=2,
|
137 |
+
max_length=256, # Added to limit generation length
|
138 |
+
generation_kwargs={ # Added to control generation
|
139 |
+
"max_new_tokens": 128,
|
140 |
+
"pad_token_id": tokenizer.eos_token_id,
|
141 |
+
"do_sample": False,
|
142 |
+
},
|
143 |
+
logging_first_step=True, # Log first step metrics
|
144 |
+
logging_nan_inf_filter=False, # Show all warnings
|
145 |
)
|
146 |
|
147 |
+
# Initialize the GRPO trainer
|
|
|
148 |
trainer = GRPOTrainer(
|
149 |
model=model,
|
150 |
args=training_args,
|
|
|
159 |
trainer.train()
|
160 |
|
161 |
# Save the final model
|
162 |
+
trainer.save_model("phi2-grpo-qlora-final")
|