Spaces:
Running
on
Zero
Running
on
Zero
refactor
Browse files- .gitignore +3 -0
- app.py +111 -127
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
Library
|
2 |
+
.venv
|
3 |
+
.ruff_cache
|
app.py
CHANGED
@@ -5,9 +5,11 @@ from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
|
5 |
from PIL import Image
|
6 |
import time
|
7 |
|
|
|
8 |
def extract_model_short_name(model_id):
|
9 |
return model_id.split("/")[-1].replace("-", " ").replace("_", " ")
|
10 |
|
|
|
11 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
12 |
model_mm_grounding_id = "rziga/mm_grounding_dino_tiny_o365v1_goldg"
|
13 |
model_omdet_id = "omlab/omdet-turbo-swin-tiny-hf"
|
@@ -18,177 +20,159 @@ model_mm_grounding_name = extract_model_short_name(model_mm_grounding_id)
|
|
18 |
model_omdet_name = extract_model_short_name(model_omdet_id)
|
19 |
model_owlv2_name = extract_model_short_name(model_owlv2_id)
|
20 |
|
21 |
-
@spaces.GPU
|
22 |
-
def detect_omdet(image: Image.Image, prompts: list, threshold: float):
|
23 |
-
t0 = time.perf_counter()
|
24 |
-
model_id = model_omdet_id
|
25 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
27 |
-
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device).eval()
|
28 |
-
texts = [prompts]
|
29 |
-
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
30 |
-
with torch.no_grad():
|
31 |
-
outputs = model(**inputs)
|
32 |
-
results = processor.post_process_grounded_object_detection(
|
33 |
-
outputs,
|
34 |
-
threshold=threshold,
|
35 |
-
target_sizes=[image.size[::-1]]
|
36 |
-
)
|
37 |
-
result = results[0]
|
38 |
-
annotations = []
|
39 |
-
raw_results = []
|
40 |
-
for box, score, label in zip(result["boxes"], result["scores"], result["labels"]):
|
41 |
-
if score >= threshold:
|
42 |
-
label_name = prompts[label]
|
43 |
-
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
44 |
-
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {score:.2f}"))
|
45 |
-
raw_results.append(f"Detected {label_name} with confidence {score:.2f} at location [{xmin}, {ymin}, {xmax}, {ymax}]")
|
46 |
-
elapsed_ms = (time.perf_counter() - t0) * 1000
|
47 |
-
time_taken = f"**Inference time ({model_omdet_name}):** {elapsed_ms:.0f} ms"
|
48 |
-
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
49 |
-
return annotations, raw_text, time_taken
|
50 |
-
@spaces.GPU
|
51 |
-
def detect_llmdet(image: Image.Image, prompts: list, threshold: float):
|
52 |
-
t0 = time.perf_counter()
|
53 |
-
model_id = model_llmdet_id
|
54 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
55 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
56 |
-
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device).eval()
|
57 |
-
texts = [prompts]
|
58 |
-
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
59 |
-
with torch.no_grad():
|
60 |
-
outputs = model(**inputs)
|
61 |
-
results = processor.post_process_grounded_object_detection(
|
62 |
-
outputs,
|
63 |
-
threshold=threshold,
|
64 |
-
target_sizes=[image.size[::-1]]
|
65 |
-
)
|
66 |
-
result = results[0]
|
67 |
-
annotations = []
|
68 |
-
raw_results = []
|
69 |
-
for box, score, label in zip(result["boxes"], result["scores"], result["labels"]):
|
70 |
-
if score >= threshold:
|
71 |
-
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
72 |
-
annotations.append(((xmin, ymin, xmax, ymax), f"{label} {score:.2f}"))
|
73 |
-
raw_results.append(f"Detected {label} with confidence {score:.2f} at location [{xmin}, {ymin}, {xmax}, {ymax}]")
|
74 |
-
elapsed_ms = (time.perf_counter() - t0) * 1000
|
75 |
-
time_taken = f"**Inference time ({model_llmdet_name}):** {elapsed_ms:.0f} ms"
|
76 |
-
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
77 |
-
return annotations, raw_text, time_taken
|
78 |
-
@spaces.GPU
|
79 |
-
def detect_mm_grounding(image: Image.Image, prompts: list, threshold: float):
|
80 |
-
t0 = time.perf_counter()
|
81 |
-
model_id = model_mm_grounding_id
|
82 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
83 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
84 |
-
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device).eval()
|
85 |
-
texts = [prompts]
|
86 |
-
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
87 |
-
with torch.no_grad():
|
88 |
-
outputs = model(**inputs)
|
89 |
-
results = processor.post_process_grounded_object_detection(
|
90 |
-
outputs,
|
91 |
-
threshold=threshold,
|
92 |
-
target_sizes=[image.size[::-1]]
|
93 |
-
)
|
94 |
-
result = results[0]
|
95 |
-
annotations = []
|
96 |
-
raw_results = []
|
97 |
-
for box, score, label in zip(result["boxes"], result["scores"], result["labels"]):
|
98 |
-
if score >= threshold:
|
99 |
-
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
100 |
-
annotations.append(((xmin, ymin, xmax, ymax), f"{label} {score:.2f}"))
|
101 |
-
raw_results.append(f"Detected {label} with confidence {score:.2f} at location [{xmin}, {ymin}, {xmax}, {ymax}]")
|
102 |
-
elapsed_ms = (time.perf_counter() - t0) * 1000
|
103 |
-
time_taken = f"**Inference time ({model_mm_grounding_name}):** {elapsed_ms:.0f} ms"
|
104 |
-
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
105 |
-
return annotations, raw_text, time_taken
|
106 |
|
107 |
@spaces.GPU
|
108 |
-
def
|
109 |
t0 = time.perf_counter()
|
110 |
-
model_id = model_owlv2_id
|
111 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
112 |
processor = AutoProcessor.from_pretrained(model_id)
|
113 |
-
model =
|
|
|
|
|
114 |
texts = [prompts]
|
115 |
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
116 |
-
with torch.
|
117 |
outputs = model(**inputs)
|
118 |
results = processor.post_process_grounded_object_detection(
|
119 |
-
outputs,
|
120 |
-
threshold=threshold,
|
121 |
-
target_sizes=[image.size[::-1]]
|
122 |
)
|
123 |
result = results[0]
|
124 |
annotations = []
|
125 |
-
|
126 |
-
for box, score, label in zip(result["boxes"], result["scores"], result["labels"]):
|
127 |
if score >= threshold:
|
128 |
-
label_name = prompts[label]
|
129 |
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
130 |
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {score:.2f}"))
|
131 |
-
raw_results.append(f"Detected {label_name} with confidence {score:.2f} at location [{xmin}, {ymin}, {xmax}, {ymax}]")
|
132 |
elapsed_ms = (time.perf_counter() - t0) * 1000
|
133 |
-
time_taken = f"**Inference time ({
|
134 |
-
|
135 |
-
return annotations, raw_text, time_taken
|
136 |
|
137 |
|
138 |
-
def run_detection(
|
139 |
-
|
140 |
-
|
141 |
prompts = [p.strip() for p in prompts_str.split(",")]
|
142 |
-
ann_llm,
|
143 |
-
ann_mm,
|
144 |
-
ann_owlv2,
|
145 |
-
ann_omdet,
|
146 |
-
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
with gr.Blocks() as app:
|
149 |
gr.Markdown("# Zero-Shot Object Detection Arena")
|
150 |
-
gr.Markdown(
|
|
|
|
|
151 |
with gr.Row():
|
152 |
with gr.Column(scale=1):
|
153 |
image = gr.Image(type="pil", label="Upload an image", height=400)
|
154 |
-
prompts = gr.Textbox(
|
|
|
|
|
155 |
with gr.Accordion("Per-model confidence thresholds", open=True):
|
156 |
-
threshold_llm = gr.Slider(
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
generate_btn = gr.Button(value="Detect")
|
161 |
with gr.Row():
|
162 |
with gr.Column(scale=2):
|
163 |
-
output_image_llm = gr.AnnotatedImage(
|
164 |
-
|
|
|
165 |
output_time_llm = gr.Markdown()
|
166 |
with gr.Column(scale=2):
|
167 |
-
output_image_mm = gr.AnnotatedImage(
|
168 |
-
|
|
|
169 |
output_time_mm = gr.Markdown()
|
170 |
with gr.Row():
|
171 |
with gr.Column(scale=2):
|
172 |
-
output_image_owlv2 = gr.AnnotatedImage(
|
173 |
-
|
|
|
174 |
output_time_owlv2 = gr.Markdown()
|
175 |
with gr.Column(scale=2):
|
176 |
-
output_image_omdet = gr.AnnotatedImage(
|
177 |
-
|
|
|
178 |
output_time_omdet = gr.Markdown()
|
179 |
gr.Markdown("### Examples")
|
180 |
example_data = [
|
181 |
-
[
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
]
|
184 |
|
185 |
gr.Examples(
|
186 |
examples=example_data,
|
187 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
label="Click an example to populate the inputs",
|
189 |
)
|
190 |
-
inputs = [
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
generate_btn.click(
|
193 |
fn=run_detection,
|
194 |
inputs=inputs,
|
@@ -200,4 +184,4 @@ with gr.Blocks() as app:
|
|
200 |
outputs=outputs,
|
201 |
)
|
202 |
|
203 |
-
app.launch()
|
|
|
5 |
from PIL import Image
|
6 |
import time
|
7 |
|
8 |
+
|
9 |
def extract_model_short_name(model_id):
|
10 |
return model_id.split("/")[-1].replace("-", " ").replace("_", " ")
|
11 |
|
12 |
+
|
13 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
14 |
model_mm_grounding_id = "rziga/mm_grounding_dino_tiny_o365v1_goldg"
|
15 |
model_omdet_id = "omlab/omdet-turbo-swin-tiny-hf"
|
|
|
20 |
model_omdet_name = extract_model_short_name(model_omdet_id)
|
21 |
model_owlv2_name = extract_model_short_name(model_owlv2_id)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
@spaces.GPU
|
25 |
+
def detect(model_id: str, image: Image.Image, prompts: list, threshold: float):
|
26 |
t0 = time.perf_counter()
|
|
|
27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
processor = AutoProcessor.from_pretrained(model_id)
|
29 |
+
model = (
|
30 |
+
AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device).eval()
|
31 |
+
)
|
32 |
texts = [prompts]
|
33 |
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
34 |
+
with torch.inference_mode():
|
35 |
outputs = model(**inputs)
|
36 |
results = processor.post_process_grounded_object_detection(
|
37 |
+
outputs, threshold=threshold, target_sizes=[image.size[::-1]]
|
|
|
|
|
38 |
)
|
39 |
result = results[0]
|
40 |
annotations = []
|
41 |
+
for box, score, label_name in zip(result["boxes"], result["scores"], result["text_abels"]):
|
|
|
42 |
if score >= threshold:
|
|
|
43 |
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
44 |
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {score:.2f}"))
|
|
|
45 |
elapsed_ms = (time.perf_counter() - t0) * 1000
|
46 |
+
time_taken = f"**Inference time ({model_omdet_name}):** {elapsed_ms:.0f} ms"
|
47 |
+
return annotations, time_taken
|
|
|
48 |
|
49 |
|
50 |
+
def run_detection(
|
51 |
+
image: Image.Image, prompts_str: str, threshold_llm, threshold_mm, threshold_owlv2, threshold_omdet,
|
52 |
+
):
|
53 |
prompts = [p.strip() for p in prompts_str.split(",")]
|
54 |
+
ann_llm, time_llm = detect(model_llmdet_id, image, prompts, threshold_llm)
|
55 |
+
ann_mm, time_mm = detect(model_mm_grounding_name, image, prompts, threshold_mm)
|
56 |
+
ann_owlv2, time_owlv2 = detect(model_omdet_id, image, prompts, threshold_owlv2)
|
57 |
+
ann_omdet, time_omdet = detect(model_owlv2_name, image, prompts, threshold_omdet)
|
58 |
+
return (
|
59 |
+
(image, ann_llm),
|
60 |
+
time_llm,
|
61 |
+
(image, ann_mm),
|
62 |
+
time_mm,
|
63 |
+
(image, ann_owlv2),
|
64 |
+
time_owlv2,
|
65 |
+
(image, ann_omdet),
|
66 |
+
time_omdet,
|
67 |
+
)
|
68 |
+
|
69 |
|
70 |
with gr.Blocks() as app:
|
71 |
gr.Markdown("# Zero-Shot Object Detection Arena")
|
72 |
+
gr.Markdown(
|
73 |
+
"### Compare different zero-shot object detection models on the same image and prompts."
|
74 |
+
)
|
75 |
with gr.Row():
|
76 |
with gr.Column(scale=1):
|
77 |
image = gr.Image(type="pil", label="Upload an image", height=400)
|
78 |
+
prompts = gr.Textbox(
|
79 |
+
label="Prompts (comma-separated)", value="a cat, a remote control"
|
80 |
+
)
|
81 |
with gr.Accordion("Per-model confidence thresholds", open=True):
|
82 |
+
threshold_llm = gr.Slider(
|
83 |
+
label="Threshold for LLMDet", minimum=0.0, maximum=1.0, value=0.3
|
84 |
+
)
|
85 |
+
threshold_mm = gr.Slider(
|
86 |
+
label="Threshold for MM GroundingDINO Tiny",
|
87 |
+
minimum=0.0,
|
88 |
+
maximum=1.0,
|
89 |
+
value=0.3,
|
90 |
+
)
|
91 |
+
threshold_owlv2 = gr.Slider(
|
92 |
+
label="Threshold for OwlV2 Large",
|
93 |
+
minimum=0.0,
|
94 |
+
maximum=1.0,
|
95 |
+
value=0.1,
|
96 |
+
)
|
97 |
+
threshold_omdet = gr.Slider(
|
98 |
+
label="Threshold for OMDet Turbo Swin Tiny",
|
99 |
+
minimum=0.0,
|
100 |
+
maximum=1.0,
|
101 |
+
value=0.2,
|
102 |
+
)
|
103 |
generate_btn = gr.Button(value="Detect")
|
104 |
with gr.Row():
|
105 |
with gr.Column(scale=2):
|
106 |
+
output_image_llm = gr.AnnotatedImage(
|
107 |
+
label=f"Annotated image for {model_llmdet_name}", height=400
|
108 |
+
)
|
109 |
output_time_llm = gr.Markdown()
|
110 |
with gr.Column(scale=2):
|
111 |
+
output_image_mm = gr.AnnotatedImage(
|
112 |
+
label=f"Annotated image for {model_mm_grounding_name}", height=400
|
113 |
+
)
|
114 |
output_time_mm = gr.Markdown()
|
115 |
with gr.Row():
|
116 |
with gr.Column(scale=2):
|
117 |
+
output_image_owlv2 = gr.AnnotatedImage(
|
118 |
+
label=f"Annotated image for {model_owlv2_name}", height=400
|
119 |
+
)
|
120 |
output_time_owlv2 = gr.Markdown()
|
121 |
with gr.Column(scale=2):
|
122 |
+
output_image_omdet = gr.AnnotatedImage(
|
123 |
+
label=f"Annotated image for {model_omdet_name}", height=400
|
124 |
+
)
|
125 |
output_time_omdet = gr.Markdown()
|
126 |
gr.Markdown("### Examples")
|
127 |
example_data = [
|
128 |
+
[
|
129 |
+
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
130 |
+
"a cat, a remote control",
|
131 |
+
0.30,
|
132 |
+
0.30,
|
133 |
+
0.10,
|
134 |
+
0.30,
|
135 |
+
],
|
136 |
+
[
|
137 |
+
"http://images.cocodataset.org/val2017/000000000139.jpg",
|
138 |
+
"a person, a tv, a remote",
|
139 |
+
0.35,
|
140 |
+
0.30,
|
141 |
+
0.12,
|
142 |
+
0.30,
|
143 |
+
],
|
144 |
]
|
145 |
|
146 |
gr.Examples(
|
147 |
examples=example_data,
|
148 |
+
inputs=[
|
149 |
+
image,
|
150 |
+
prompts,
|
151 |
+
threshold_llm,
|
152 |
+
threshold_mm,
|
153 |
+
threshold_owlv2,
|
154 |
+
threshold_omdet,
|
155 |
+
],
|
156 |
label="Click an example to populate the inputs",
|
157 |
)
|
158 |
+
inputs = [
|
159 |
+
image,
|
160 |
+
prompts,
|
161 |
+
threshold_llm,
|
162 |
+
threshold_mm,
|
163 |
+
threshold_owlv2,
|
164 |
+
threshold_omdet,
|
165 |
+
]
|
166 |
+
outputs = [
|
167 |
+
output_image_llm,
|
168 |
+
output_time_llm,
|
169 |
+
output_image_mm,
|
170 |
+
output_time_mm,
|
171 |
+
output_image_owlv2,
|
172 |
+
output_time_owlv2,
|
173 |
+
output_image_omdet,
|
174 |
+
output_time_omdet,
|
175 |
+
]
|
176 |
generate_btn.click(
|
177 |
fn=run_detection,
|
178 |
inputs=inputs,
|
|
|
184 |
outputs=outputs,
|
185 |
)
|
186 |
|
187 |
+
app.launch()
|