File size: 11,118 Bytes
1822f54
 
fb3abe1
1822f54
 
 
3ce1088
fb3abe1
3ce1088
 
 
 
 
 
fb3abe1
3ce1088
 
 
 
 
 
1822f54
3ce1088
 
 
 
 
1822f54
3ce1088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3abe1
 
3ce1088
 
 
 
 
 
 
 
 
 
 
1822f54
3ce1088
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import multiprocessing
import threading
import gradio as gr
from mining import mining
from sts import sts
from utils import getDataFrame, save_to_csv, delete_folder_periodically
import logging

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

CONCURRENCY_LIMIT = 5
AVAILABLE_MODELS = [
    "Lajavaness/bilingual-embedding-large",
    "sentence-transformers/all-mpnet-base-v2",
    "intfloat/multilingual-e5-large-instruct"
]

MODEL_DESCRIPTIONS = {
    "Lajavaness/bilingual-embedding-large": "Multilingual model optimized for multiple languages. [More info](https://huggingface.co/Lajavaness/bilingual-embedding-large)",
    "sentence-transformers/all-mpnet-base-v2": "High-quality general-purpose model. [More info](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)",
    "intfloat/multilingual-e5-large-instruct": "Multilingual model with instructions. [More info](https://huggingface.co/intfloat/multilingual-e5-large-instruct)"
}

def create_interface():
    with gr.Blocks(title="Sentence Transformers Demo") as demo:
        gr.Markdown("# Sentence Transformers Demo")
        gr.Markdown("This application provides two main functionalities: Paraphrase Mining and Semantic Textual Similarity (STS).")
        
        with gr.Tab("Paraphrase Mining"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown(
                        "### Paraphrase Mining\n"
                        "Find paraphrases (texts with identical/similar meaning) in a large corpus of sentences.\n"
                        "Upload a CSV file containing your sentences and select a model to begin."
                    )
            
            with gr.Row():
                with gr.Column():
                    gr.Markdown("#### Input Sentences")
                    upload_button_sentences = gr.UploadButton(
                        label="Upload Sentences CSV",
                        file_types=['.csv'],
                        file_count="single",
                        variant="primary"
                    )
                    output_data_sentences = gr.Dataframe(
                        headers=["_id", "text"],
                        col_count=2,
                        label="Sentences Data",
                        interactive=False
                    )
                    
                    upload_button_sentences.upload(
                        fn=getDataFrame,
                        inputs=upload_button_sentences,
                        outputs=output_data_sentences,
                        concurrency_limit=CONCURRENCY_LIMIT
                    )
            
            with gr.Row():
                with gr.Column():
                    model = gr.Dropdown(
                        choices=AVAILABLE_MODELS,
                        label="Select Model",
                        value=AVAILABLE_MODELS[0],
                        interactive=True
                    )
                    model_description = gr.Markdown(MODEL_DESCRIPTIONS[AVAILABLE_MODELS[0]])
                    
                    def update_model_description(model_name):
                        return MODEL_DESCRIPTIONS[model_name]
                    
                    model.change(
                        fn=update_model_description,
                        inputs=model,
                        outputs=model_description
                    )
                    
                    score_mining = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.96,
                        step=0.01,
                        label="Similarity Threshold",
                        interactive=True
                    )
                    submit_button_mining = gr.Button("Process", variant="primary")
            
            with gr.Row():
                with gr.Column():
                    output_mining = gr.Dataframe(
                        headers=["score", "sentence_1", "sentence_2"],
                        type="polars",
                        label="Mining Results"
                    )
                    
                    submit_button_mining.click(
                        fn=mining,
                        inputs=[model, upload_button_sentences, score_mining],
                        outputs=output_mining
                    ).then(
                        fn=lambda x: gr.Info("Processing completed successfully!") if x is not None else gr.Error("Error processing data. Please check the logs for details."),
                        inputs=[output_mining],
                        outputs=[]
                    )
                    
                    download_button = gr.Button("Download Results as CSV", variant="secondary")
                    download_file = gr.File(label="Downloadable File")
                    
                    download_button.click(
                        fn=save_to_csv,
                        inputs=output_mining,
                        outputs=download_file
                    ).then(
                        fn=lambda x: gr.Info("Results saved successfully!") if x is not None else gr.Error("Error saving results. Please check the logs for details."),
                        inputs=[download_file],
                        outputs=[]
                    )
        
        with gr.Tab("Semantic Textual Similarity"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown(
                        "### Semantic Textual Similarity (STS)\n"
                        "Calculate semantic similarity between two sets of sentences.\n"
                        "Upload two CSV files containing your sentences and select a model to begin."
                    )
            
            with gr.Row():
                with gr.Column():
                    gr.Markdown("#### First Set of Sentences")
                    upload_button_sentences1 = gr.UploadButton(
                        label="Upload First Set CSV",
                        file_types=['.csv'],
                        file_count="single",
                        variant="primary"
                    )
                    output_data_sentences1 = gr.Dataframe(
                        headers=["_id", "text"],
                        col_count=2,
                        label="First Set Data",
                        interactive=False
                    )
                    
                    upload_button_sentences1.upload(
                        fn=getDataFrame,
                        inputs=upload_button_sentences1,
                        outputs=output_data_sentences1,
                        concurrency_limit=CONCURRENCY_LIMIT
                    )
                
                with gr.Column():
                    gr.Markdown("#### Second Set of Sentences")
                    upload_button_sentences2 = gr.UploadButton(
                        label="Upload Second Set CSV",
                        file_types=['.csv'],
                        file_count="single",
                        variant="primary"
                    )
                    output_data_sentences2 = gr.Dataframe(
                        headers=["_id", "text"],
                        col_count=2,
                        label="Second Set Data",
                        interactive=False
                    )
                    
                    upload_button_sentences2.upload(
                        fn=getDataFrame,
                        inputs=upload_button_sentences2,
                        outputs=output_data_sentences2,
                        concurrency_limit=CONCURRENCY_LIMIT
                    )
            
            with gr.Row():
                with gr.Column():
                    model = gr.Dropdown(
                        choices=AVAILABLE_MODELS,
                        label="Select Model",
                        value=AVAILABLE_MODELS[0],
                        interactive=True
                    )
                    model_description = gr.Markdown(MODEL_DESCRIPTIONS[AVAILABLE_MODELS[0]])
                    
                    model.change(
                        fn=update_model_description,
                        inputs=model,
                        outputs=model_description
                    )
                    
                    score_sts = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.96,
                        step=0.01,
                        label="Similarity Threshold",
                        interactive=True
                    )
                    submit_button_sts = gr.Button("Process", variant="primary")
            
            with gr.Row():
                with gr.Column():
                    output_sts = gr.Dataframe(
                        headers=["score", "sentences1", "sentences2"],
                        type="polars",
                        label="Similarity Results"
                    )
                    
                    submit_button_sts.click(
                        fn=sts,
                        inputs=[model, upload_button_sentences1, upload_button_sentences2, score_sts],
                        outputs=output_sts
                    ).then(
                        fn=lambda x: gr.Info("Processing completed successfully!") if x is not None else gr.Error("Error processing data. Please check the logs for details."),
                        inputs=[output_sts],
                        outputs=[]
                    )
                    
                    download_button = gr.Button("Download Results as CSV", variant="secondary")
                    download_file = gr.File(label="Downloadable File")
                    
                    download_button.click(
                        fn=save_to_csv,
                        inputs=output_sts,
                        outputs=download_file
                    ).then(
                        fn=lambda x: gr.Info("Results saved successfully!") if x is not None else gr.Error("Error saving results. Please check the logs for details."),
                        inputs=[download_file],
                        outputs=[]
                    )
        
        return demo

if __name__ == "__main__":
    try:
        multiprocessing.set_start_method("spawn")
        
        # Start cleanup thread
        folder_path = "data"
        thread = threading.Thread(
            target=delete_folder_periodically,
            args=(folder_path, 1800),
            daemon=True
        )
        thread.start()

        # Create and launch interface
        demo = create_interface()
        demo.launch(
            share=False,
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            show_api=False
        )
    except Exception as e:
        logger.error(f"Error starting application: {str(e)}")
        raise