File size: 2,501 Bytes
fb3abe1 3ce1088 fb3abe1 3ce1088 d360697 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
title: Sentence Transformers
emoji: 🏢
colorFrom: green
colorTo: gray
sdk: gradio
sdk_version: 5.33.1
app_file: app.py
pinned: false
---
# Sentence Transformers Demo
Interactive web application for semantic text similarity analysis using Sentence Transformers models.
## Features
### 1. Paraphrase Mining
- Find sentences with similar meaning in a text corpus
- Support for multiple language models
- Adjustable similarity threshold
- Export results in CSV format
### 2. Semantic Textual Similarity (STS)
- Calculate semantic similarity between two sets of sentences
- Uses advanced sentence transformation models
- Compare sentences in different languages
- Export results in CSV format
## Available Models
- [`Lajavaness/bilingual-embedding-large`](https://huggingface.co/Lajavaness/bilingual-embedding-large): Multilingual model optimized for multiple languages
- [`sentence-transformers/all-mpnet-base-v2`](https://huggingface.co/sentence-transformers/all-mpnet-base-v2): High-quality general-purpose model
- [`intfloat/multilingual-e5-large-instruct`](https://huggingface.co/intfloat/multilingual-e5-large-instruct): Multilingual model with instructions
## Requirements
- Python 3.8+
- Dependencies listed in `requirements.txt`
## Installation
1. Clone the repository:
```bash
git clone https://github.com/yourusername/sentence-transformers.git
cd sentence-transformers
```
2. Create and activate a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # Linux/Mac
# or
.\venv\Scripts\activate # Windows
```
3. Install dependencies:
```bash
pip install -r requirements.txt
```
## Usage
1. Start the application:
```bash
python app.py
```
2. Open your browser at `http://localhost:7860`
3. Select the desired functionality:
- Paraphrase Mining: Upload a CSV file with sentences to analyze
- STS: Upload two CSV files with sentences to compare
4. Select the model and adjust the similarity threshold
5. Click "Process" to start the analysis
6. Download results in CSV format
## CSV File Format
CSV files must contain a column named "text" with the sentences to analyze:
```csv
text
"First sentence to analyze"
"Second sentence to analyze"
...
```
## Notes
- Temporary files are automatically cleaned up every 30 minutes
- Using complete sentences is recommended for better results
- Models may take time to load on first use
## License
MIT
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference |