import gradio as gr from PIL import Image def predict(merge_ratio, guidance, steps, sharpness, prompt1, prompt2, seed): result_image = Image.new('RGB', [512,512], (seed)) print(merge_ratio, guidance, steps, sharpness, prompt1, prompt2, seed) return result_image with gr.Blocks() as demo: with gr.Row(): with gr.Column(): image = gr.Image(type="pil") with gr.Column(): merge_ratio = gr.Slider(minimum=0, maximum=50, step=1, label="Merge Ratio") guidance = gr.Slider(label="Guidance") steps = gr.Slider(label="Steps") sharpness = gr.Slider(minimum=0, maximum=50, step=1, label="sharpness") seed = gr.Slider(randomize=True, minimum=0, maximum=12013012031030) prompt1 = gr.Textbox(label="Prompt 1") prompt2 = gr.Textbox(label="Prompt 2") generate_bt = gr.Button("Generate") inputs = [merge_ratio, guidance, steps, sharpness, prompt1, prompt2, seed] generate_bt.click(predict, inputs=inputs, outputs=image, show_progress=False) seed.change(predict, inputs=inputs, outputs=image, show_progress=False) if __name__ == "__main__": demo.launch()