aifartist's picture
Update gradio-app.py
ce35e14 verified
raw
history blame
6.6 kB
import time
import gradio as gr
from PIL import Image
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny
import os, sys
import subprocess
subprocess.check_call([sys.executable, "-m", "pip", "install", 'stable-fast'])
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
# I have no idea where the env is config'ed. Thus:
TORCH_COMPILE = True
if SAFETY_CHECKER:
pipe = DiffusionPipeline.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
custom_pipeline="lcm_txt2img",
scheduler=None,
)
else:
pipe = DiffusionPipeline.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
custom_pipeline="lcm_txt2img",
scheduler=None,
safety_checker=None,
)
pipe.to(device="cuda", dtype=torch.float16)
pipe.vae = AutoencoderTiny.from_pretrained(
"madebyollin/taesd", device="cuda", torch_dtype=torch.float16
)
pipe.vae = pipe.vae.cuda()
pipe.unet.to(memory_format=torch.channels_last)
pipe.set_progress_bar_config(disable=True)
if TORCH_COMPILE:
#optmode = 'max-autotune'
#optmode = 'reduce-overhead'
#pipe.text_encoder = torch.compile(pipe.text_encoder, mode=optmode)
#pipe.tokenizer = torch.compile(pipe.tokenizer, mode=optmode)
#pipe.unet = torch.compile(pipe.unet, mode=optmode)
#pipe.vae = torch.compile(pipe.vae, mode=optmode)
doCompile = True
if doCompile:
config = CompilationConfig.Default()
try:
import xformers
config.enable_xformers = True
except ImportError:
print('xformers not installed, skipping')
try:
import triton
config.enable_triton = True
except ImportError:
print('Triton not installed, skipping')
config.enable_cuda_graph = True
config.enable_jit = True
config.enable_jit_freeze = True
config.trace_scheduler = False#True CHECK THIS AGAIN
config.enable_cnn_optimization = True
config.preserve_parameters = False
config.prefer_lowp_gemm = True
config.enable_fused_linear_geglu = True
torch.jit.optimize_for_inference = True
torch.jit.enable_onednn_fusion = True
torch.jit.set_fusion_strategy([('STATIC', 1), ('DYNAMIC', 1)])
for p in pipe.text_encoder.parameters(): p.requires_grad=False
for p in pipe.vae.decoder.parameters(): p.requires_grad=False
for p in pipe.unet.parameters(): p.requires_grad=False
def predict(prompt1, prompt2, merge_ratio, guidance, steps, sharpness, seed=1231231):
torch.manual_seed(seed)
tm0 = time.time()
results = pipe(
prompt1=prompt1,
prompt2=prompt2,
sv=merge_ratio,
sharpness=sharpness,
width=640,
height=640,
num_inference_steps=steps,
guidance_scale=guidance,
lcm_origin_steps=50,
output_type="pil",
# return_dict=False,
)
torch.cuda.synchronize()
tmval = f"time = {time.time()-tm0}"
print(f"time = {time.time()-tm0}")
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
raise gr.Error("NSFW content detected. Please try another prompt.")
return results.images[0], tmval
css = """
#container{
margin: 0 auto;
max-width: 80rem;
}
#intro{
max-width: 32rem;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
gr.Markdown(
"""# SDZoom
Welcome to sdzoom, a testbed application designed for optimizing and experimenting with various
configurations to achieve the fastest Stable Diffusion (SD) pipelines.
RTSD leverages the expertise provided by Latent Consistency Models (LCM). For more information about LCM,
visit their website at [Latent Consistency Models](https://latent-consistency-models.github.io/).
""",
elem_id="intro",
)
with gr.Row():
with gr.Column():
image = gr.Image(type="pil")
with gr.Column():
merge_ratio = gr.Slider(
value=50, minimum=1, maximum=100, step=1, label="Merge Ratio"
)
guidance = gr.Slider(
label="Guidance", minimum=1, maximum=50, value=10.0, step=0.01
)
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=20, step=1)
sharpness = gr.Slider(
value=1.0, minimum=0, maximum=1, step=0.001, label="Sharpness"
)
seed = gr.Slider(
randomize=True, minimum=0, maximum=12013012031030, label="Seed"
)
prompt1 = gr.Textbox(label="Prompt 1")
prompt2 = gr.Textbox(label="Prompt 2")
msg = gr.Textbox(label="Message", interactive=False)
generate_bt = gr.Button("Generate")
inputs = [prompt1, prompt2, merge_ratio, guidance, steps, sharpness, seed]
gr.Examples(
examples=[
["Elon Musk", "Mark Zuckerberg", 50, 10.0, 4, 1.0, 1231231],
["Elon Musk", "Bill Gates", 50, 10.0, 4, 1.0, 53453],
[
"Asian women, intricate jewlery in her hair, 8k",
"Tom Cruise, intricate jewlery in her hair, 8k",
50,
10.0,
4,
1.0,
542343,
],
],
fn=predict,
inputs=inputs,
outputs=[image, msg],
)
generate_bt.click(fn=predict, inputs=inputs, outputs=[image, msg], show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=[image, msg], show_progress=False)
merge_ratio.change(
fn=predict, inputs=inputs, outputs=[image, msg], show_progress=False
)
guidance.change(fn=predict, inputs=inputs, outputs=[image, msg], show_progress=False)
steps.change(fn=predict, inputs=inputs, outputs=[image, msg], show_progress=False)
sharpness.change(fn=predict, inputs=inputs, outputs=[image, msg], show_progress=False)
prompt1.change(fn=predict, inputs=inputs, outputs=[image, msg], show_progress=False)
prompt2.change(fn=predict, inputs=inputs, outputs=[image, msg], show_progress=False)
demo.queue()
if __name__ == "__main__":
demo.launch()