Spaces:
Runtime error
Runtime error
File size: 4,971 Bytes
fc3c6a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
from PIL import Image
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny
import os
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
if SAFETY_CHECKER:
pipe = DiffusionPipeline.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
custom_pipeline="lcm_txt2img",
scheduler=None,
)
else:
pipe = DiffusionPipeline.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
custom_pipeline="lcm_txt2img",
scheduler=None,
safety_checker=None,
)
pipe.to(device="cuda", dtype=torch.float16)
pipe.vae = AutoencoderTiny.from_pretrained(
"madebyollin/taesd", device="cuda", torch_dtype=torch.float16
)
pipe.vae = pipe.vae.cuda()
pipe.unet.to(memory_format=torch.channels_last)
pipe.set_progress_bar_config(disable=True)
if TORCH_COMPILE:
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="max-autotune")
pipe.tokenizer = torch.compile(pipe.tokenizer, mode="max-autotune")
pipe.unet = torch.compile(pipe.unet, mode="max-autotune")
pipe.vae = torch.compile(pipe.vae, mode="max-autotune")
def predict(prompt1, prompt2, merge_ratio, guidance, steps, sharpness, seed=1231231):
torch.manual_seed(seed)
results = pipe(
prompt1=prompt1,
prompt2=prompt2,
sv=merge_ratio,
sharpness=sharpness,
width=512,
height=512,
num_inference_steps=steps,
guidance_scale=guidance,
lcm_origin_steps=50,
output_type="pil",
# return_dict=False,
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
raise gr.Error("NSFW content detected. Please try another prompt.")
return results.images[0]
css = """
#container{
margin: 0 auto;
max-width: 80rem;
}
#intro{
max-width: 32rem;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
gr.Markdown(
"""# SDZoom
Welcome to sdzoom, a testbed application designed for optimizing and experimenting with various
configurations to achieve the fastest Stable Diffusion (SD) pipelines.
RTSD leverages the expertise provided by Latent Consistency Models (LCM). For more information about LCM,
visit their website at [Latent Consistency Models](https://latent-consistency-models.github.io/).
""",
elem_id="intro",
)
with gr.Row():
with gr.Column():
image = gr.Image(type="pil")
with gr.Column():
merge_ratio = gr.Slider(
value=50, minimum=1, maximum=100, step=1, label="Merge Ratio"
)
guidance = gr.Slider(
label="Guidance", minimum=1, maximum=50, value=10.0, step=0.01
)
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=20, step=1)
sharpness = gr.Slider(
value=1.0, minimum=0, maximum=1, step=0.001, label="Sharpness"
)
seed = gr.Slider(
randomize=True, minimum=0, maximum=12013012031030, label="Seed"
)
prompt1 = gr.Textbox(label="Prompt 1")
prompt2 = gr.Textbox(label="Prompt 2")
generate_bt = gr.Button("Generate")
inputs = [prompt1, prompt2, merge_ratio, guidance, steps, sharpness, seed]
gr.Examples(
examples=[
["Elon Musk", "Mark Zuckerberg", 50, 10.0, 4, 1.0, 1231231],
["Elon Musk", "Bill Gates", 50, 10.0, 4, 1.0, 53453],
[
"Asian women, intricate jewlery in her hair, 8k",
"Tom Cruise, intricate jewlery in her hair, 8k",
50,
10.0,
4,
1.0,
542343,
],
],
fn=predict,
inputs=inputs,
outputs=image,
)
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
merge_ratio.change(
fn=predict, inputs=inputs, outputs=image, show_progress=False
)
guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
sharpness.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
prompt1.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
prompt2.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
demo.queue()
if __name__ == "__main__":
demo.launch()
|