import os import gradio as gr import requests import inspect import pandas as pd # --- Hugging Face Agents & Tools imports --- from transformers import load_tool, ReactAgent # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Load Tools --- # Document QA tool qa_tool = load_tool( task_or_repo_id="document_question_answering", model_repo_id="deepset/roberta-base-squad2" ) # Web search tool web_tool = load_tool( task_or_repo_id="search" ) # Python REPL tool python_tool = load_tool( task_or_repo_id="python_repl" ) # --- Agent Definition --- class BasicAgent: def __init__(self): print("BasicAgent initialized with real tools.") # Initialize a ReAct agent with the loaded tools self.agent = ReactAgent( tools=[qa_tool, web_tool, python_tool], llm_engine="openai/chat:gpt-3.5-turbo", verbose=True ) def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") try: answer = self.agent.run(question) print(f"Agent returning answer: {answer}") return answer except Exception as e: print(f"Error in agent execution: {e}") return f"AGENT ERROR: {e}" # --- Evaluation & Submission Logic --- def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ space_id = os.getenv("SPACE_ID") if profile: username = profile.username print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(f"Agent code at: {agent_code}") # 2. Fetch Questions try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty or invalid format.", None except Exception as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None # 3. Run Agent on each question results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer }) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Submit Answers submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) results_df = pd.DataFrame(results_log) return final_status, results_df except Exception as e: print(f"Submission error: {e}") results_df = pd.DataFrame(results_log) return f"Submission Failed: {e}", results_df # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Clone this space and modify the code to define your agent's logic and tools. 2. Log in with Hugging Face to submit under your username. 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, and submit. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("Launching Gradio App...") demo.launch(debug=True, share=False)