import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool # from langchain_openai import ChatOpenAI from langchain_deepseek import ChatDeepSeek load_dotenv() DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY") @tool def multiply(a: int, b: int) -> int: """Multiplies two numbers.""" return a * b @tool def add (a: int, b: int) -> int: """Adds two numbers.""" return a + b @tool def subtract (a: int, b: int) -> int: """Subtracts two numbers.""" return a - b @tool def divide (a: int, b: int) -> int: """Divides two numbers.""" return a / b @tool def modulo (a: int, b: int) -> int: """Returns the remainder of two numbers.""" return a % b @tool def wiki_search(query:str)->str: "Using Wikipedia, search for a query and return the first result." search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arvix_results": formatted_search_docs} # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) tools = [ multiply, add, subtract, divide, modulo, wiki_search, arvix_search, ] def build_graph(): llm = ChatDeepSeek( model="deepseek-chat", temperature=0, max_tokens=None, timeout=None, max_retries=2, api_key=DEEPSEEK_API_KEY, ) llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools",ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") return builder.compile() if __name__ == "__main__": question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" # Build the graph graph = build_graph() png_data = graph.get_graph().draw_mermaid_png() with open("graph.png", "wb") as f: f.write(png_data) # Run the graph messages = [HumanMessage(content=question)] messages = graph.invoke({"messages": messages}) for m in messages["messages"]: m.pretty_print()