File size: 5,180 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
10e9b7d
2e52478
 
 
e80aab9
3db6293
e80aab9
2e52478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
2e52478
 
 
 
 
 
 
 
31243f4
 
2e52478
 
 
 
 
 
 
4021bf3
2e52478
 
31243f4
 
 
 
2e52478
3c4371f
7e4a06b
2e52478
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
2e52478
31243f4
 
 
3c4371f
31243f4
2e52478
36ed51a
2e52478
3c4371f
7d65c66
eccf8e4
31243f4
7d65c66
31243f4
 
2e52478
 
31243f4
 
e80aab9
2e52478
7d65c66
 
31243f4
 
 
 
 
2e52478
 
 
 
 
 
 
31243f4
 
 
 
2e52478
 
 
 
 
 
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
 
7d65c66
2e52478
31243f4
2e52478
e80aab9
2e52478
e80aab9
31243f4
0ee0419
e514fd7
 
2e52478
 
 
e514fd7
e80aab9
 
7e4a06b
31243f4
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
 
2e52478
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import gradio as gr
import requests
import inspect
import pandas as pd

# --- Hugging Face Agents & Tools imports ---
from transformers import load_tool, ReactAgent

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Load Tools ---
# Document QA tool
qa_tool = load_tool(
    task_or_repo_id="document_question_answering",
    model_repo_id="deepset/roberta-base-squad2"
)
# Web search tool
web_tool = load_tool(
    task_or_repo_id="search"
)
# Python REPL tool
python_tool = load_tool(
    task_or_repo_id="python_repl"
)

# --- Agent Definition ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized with real tools.")
        # Initialize a ReAct agent with the loaded tools
        self.agent = ReactAgent(
            tools=[qa_tool, web_tool, python_tool],
            llm_engine="openai/chat:gpt-3.5-turbo",
            verbose=True
        )

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        try:
            answer = self.agent.run(question)
            print(f"Agent returning answer: {answer}")
            return answer
        except Exception as e:
            print(f"Error in agent execution: {e}")
            return f"AGENT ERROR: {e}"

# --- Evaluation & Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code at: {agent_code}")

    # 2. Fetch Questions
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    # 3. Run Agent on each question
    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        submitted_answer = agent(question_text)
        answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
        results_log.append({
            "Task ID": task_id,
            "Question": question_text,
            "Submitted Answer": submitted_answer
        })

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Submit Answers
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        print(f"Submission error: {e}")
        results_df = pd.DataFrame(results_log)
        return f"Submission Failed: {e}", results_df

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Clone this space and modify the code to define your agent's logic and tools.
        2. Log in with Hugging Face to submit under your username.
        3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, and submit.
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("Launching Gradio App...")
    demo.launch(debug=True, share=False)