Spaces:
Running
Running
import torch | |
from transformers import AutoModel, AutoImageProcessor | |
from datasets import load_dataset | |
from safetensors.torch import save_file | |
ds = load_dataset("wbensvage/clothes_desc")["train"] | |
ds = ds.select_columns(["image"]) | |
model_name = "google/siglip2-large-patch16-512" | |
model = AutoModel.from_pretrained(model_name, device_map="auto").eval() | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
def encode_images(examples): | |
images = examples["image"] | |
inputs = processor(images=images, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
image_embeddings = model.get_image_features(**inputs) | |
return {"vector": image_embeddings.detach().cpu()} | |
print(model.device) | |
ds = ds.map(encode_images, batched=True, batch_size=32) | |
ds.set_format(type="torch", columns=["vector"]) | |
print(ds["vector"].shape) | |
save_file({"vectors": ds["vector"]}, "clothes_desc.safetensors") | |