Spaces:
Running
Running
Switch to TinyLlama GGUF model for much faster inference in Hugging Face Spaces
Browse files- .env.spaces +5 -2
- app/llm/model.py +220 -59
- requirements-hf.txt +1 -0
.env.spaces
CHANGED
@@ -7,10 +7,13 @@ HF_SPACES=1
|
|
7 |
TEXT_TO_IMAGE_APP_ID=c25dcd829d134ea98f5ae4dd311d13bc.node3.openfabric.network
|
8 |
IMAGE_TO_3D_APP_ID=f0b5f319156c4819b9827000b17e511a.node3.openfabric.network
|
9 |
|
10 |
-
# LLM Configuration for Spaces - use a
|
11 |
-
MODEL_ID=
|
12 |
USE_LOCAL_MODEL=true
|
13 |
MODEL_QUANTIZED=true
|
|
|
|
|
|
|
14 |
|
15 |
# Data Directories (Spaces-friendly paths)
|
16 |
IMAGE_OUTPUT_DIR=/tmp/data/images
|
|
|
7 |
TEXT_TO_IMAGE_APP_ID=c25dcd829d134ea98f5ae4dd311d13bc.node3.openfabric.network
|
8 |
IMAGE_TO_3D_APP_ID=f0b5f319156c4819b9827000b17e511a.node3.openfabric.network
|
9 |
|
10 |
+
# LLM Configuration for Spaces - use a very fast model optimized for efficiency
|
11 |
+
MODEL_ID=TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF
|
12 |
USE_LOCAL_MODEL=true
|
13 |
MODEL_QUANTIZED=true
|
14 |
+
MODEL_TYPE=gguf
|
15 |
+
MODEL_REVISION=main
|
16 |
+
MODEL_FILENAME=tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf
|
17 |
|
18 |
# Data Directories (Spaces-friendly paths)
|
19 |
IMAGE_OUTPUT_DIR=/tmp/data/images
|
app/llm/model.py
CHANGED
@@ -2,21 +2,44 @@ import os
|
|
2 |
from typing import Dict, List, Optional, Union
|
3 |
import logging
|
4 |
import torch
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoConfig
|
6 |
from pathlib import Path
|
|
|
|
|
7 |
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
class LocalLLM:
|
12 |
"""
|
13 |
-
A wrapper for running local LLMs using
|
14 |
Optimized for creative prompt expansion and interpretation.
|
15 |
"""
|
16 |
|
17 |
def __init__(
|
18 |
self,
|
19 |
-
model_path: str = "
|
|
|
|
|
20 |
device_map: str = "auto",
|
21 |
torch_dtype=None,
|
22 |
use_quantization: bool = False,
|
@@ -26,34 +49,111 @@ class LocalLLM:
|
|
26 |
|
27 |
Args:
|
28 |
model_path: Path to model or HuggingFace model ID
|
|
|
|
|
29 |
device_map: Device mapping strategy (default: "auto")
|
30 |
-
torch_dtype: Torch data type (default:
|
31 |
use_quantization: Whether to use 8-bit quantization to reduce memory usage
|
32 |
"""
|
33 |
self.model_path = model_path
|
|
|
|
|
34 |
self.device_map = device_map
|
35 |
self.use_quantization = use_quantization
|
|
|
|
|
|
|
36 |
|
37 |
-
if
|
38 |
-
|
39 |
-
|
40 |
-
# Apple Silicon uses float16
|
41 |
-
self.torch_dtype = torch.float16
|
42 |
-
elif (
|
43 |
-
torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8
|
44 |
-
):
|
45 |
-
# Modern NVIDIA GPUs use bfloat16
|
46 |
-
self.torch_dtype = torch.bfloat16
|
47 |
-
else:
|
48 |
-
# Default to float16 for other cases
|
49 |
-
self.torch_dtype = torch.float16
|
50 |
else:
|
51 |
self.torch_dtype = torch_dtype
|
52 |
|
53 |
logger.info(f"Loading LLM from {model_path}")
|
54 |
-
logger.info(
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
try:
|
59 |
# When running in Spaces, we need more conservative settings
|
@@ -74,7 +174,7 @@ class LocalLLM:
|
|
74 |
}
|
75 |
)
|
76 |
else:
|
77 |
-
load_kwargs["device_map"] = device_map
|
78 |
|
79 |
# In Spaces, use more conservative loading options
|
80 |
if spaces_mode:
|
@@ -89,21 +189,19 @@ class LocalLLM:
|
|
89 |
}
|
90 |
)
|
91 |
|
92 |
-
# For Phi models, use even more conservative settings
|
93 |
-
if "phi" in model_path.lower():
|
94 |
-
load_kwargs.update(
|
95 |
-
{
|
96 |
-
"torch_dtype": torch.float16, # Force float16 for Phi model
|
97 |
-
}
|
98 |
-
)
|
99 |
-
|
100 |
# Skip the custom config handling for Spaces mode or small models
|
101 |
-
if
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
else:
|
105 |
# Standard local loading with our custom config handling
|
106 |
-
config = AutoConfig.from_pretrained(model_path)
|
107 |
|
108 |
# Fix the rope_scaling issue for Llama models
|
109 |
if hasattr(config, "rope_scaling") and isinstance(
|
@@ -113,35 +211,30 @@ class LocalLLM:
|
|
113 |
logger.info("Fixed rope_scaling configuration with type=linear")
|
114 |
elif (
|
115 |
not hasattr(config, "rope_scaling")
|
116 |
-
and "llama" in model_path.lower()
|
117 |
):
|
118 |
config.rope_scaling = {"type": "linear", "factor": 1.0}
|
119 |
logger.info("Added default rope_scaling configuration")
|
120 |
|
121 |
# Load the tokenizer
|
122 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
123 |
|
124 |
# Load the model with our fixed config
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
model_path, config=config, **load_kwargs
|
129 |
-
)
|
130 |
-
else:
|
131 |
-
# For other devices, use the device_map parameter
|
132 |
-
model = AutoModelForCausalLM.from_pretrained(
|
133 |
-
model_path, config=config, **load_kwargs
|
134 |
-
)
|
135 |
|
136 |
# Create the pipeline with our pre-loaded model and tokenizer
|
137 |
self.pipe = pipeline(
|
138 |
"text-generation", model=model, tokenizer=tokenizer, framework="pt"
|
139 |
)
|
|
|
|
|
140 |
|
141 |
-
logger.info("
|
142 |
|
143 |
except Exception as e:
|
144 |
-
logger.error(f"Failed to load model: {str(e)}")
|
145 |
raise
|
146 |
|
147 |
def generate(
|
@@ -165,6 +258,67 @@ class LocalLLM:
|
|
165 |
Returns:
|
166 |
The generated text
|
167 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
# Format messages for chat-style models
|
169 |
messages = []
|
170 |
|
@@ -192,7 +346,7 @@ class LocalLLM:
|
|
192 |
return response
|
193 |
|
194 |
except Exception as e:
|
195 |
-
logger.error(f"Error during generation: {str(e)}")
|
196 |
return ""
|
197 |
|
198 |
def expand_creative_prompt(self, prompt: str) -> str:
|
@@ -240,18 +394,23 @@ def get_llm_instance(model_path: Optional[str] = None) -> Optional[LocalLLM]:
|
|
240 |
Returns:
|
241 |
A LocalLLM instance or None if model loading fails
|
242 |
"""
|
243 |
-
# If model path not provided, first check for MODEL_PATH, then MODEL_ID from environment
|
244 |
-
if not model_path:
|
245 |
-
model_path = os.environ.get("MODEL_PATH") or os.environ.get(
|
246 |
-
"MODEL_ID", "microsoft/phi-1_5" # Changed default to a smaller model
|
247 |
-
)
|
248 |
-
|
249 |
-
# Check if local models should be disabled (useful in restricted environments)
|
250 |
use_local_model = os.environ.get("USE_LOCAL_MODEL", "true").lower() != "false"
|
251 |
if not use_local_model:
|
252 |
logger.info("Local model usage is disabled by environment setting")
|
253 |
return None
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
# Check if quantization is enabled
|
256 |
use_quantization = os.environ.get("MODEL_QUANTIZED", "false").lower() == "true"
|
257 |
|
@@ -266,16 +425,18 @@ def get_llm_instance(model_path: Optional[str] = None) -> Optional[LocalLLM]:
|
|
266 |
device_map = "auto"
|
267 |
torch_dtype = None
|
268 |
|
269 |
-
# For Hugging Face Spaces,
|
270 |
spaces_mode = os.environ.get("HF_SPACES", "0") == "1"
|
271 |
-
if spaces_mode:
|
272 |
logger.info("Running in Hugging Face Spaces, using CPU for stability")
|
273 |
-
# Force CPU for Spaces
|
274 |
device_map = "cpu" if not use_quantization else "auto"
|
275 |
|
276 |
-
# Create the LLM instance
|
277 |
return LocalLLM(
|
278 |
model_path=model_path,
|
|
|
|
|
279 |
device_map=device_map,
|
280 |
torch_dtype=torch_dtype,
|
281 |
use_quantization=use_quantization,
|
|
|
2 |
from typing import Dict, List, Optional, Union
|
3 |
import logging
|
4 |
import torch
|
|
|
5 |
from pathlib import Path
|
6 |
+
import json
|
7 |
+
import tempfile
|
8 |
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
+
# Try to import transformers and ctransformers
|
12 |
+
try:
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoConfig
|
14 |
+
|
15 |
+
HAS_TRANSFORMERS = True
|
16 |
+
except ImportError:
|
17 |
+
HAS_TRANSFORMERS = False
|
18 |
+
logger.warning(
|
19 |
+
"Transformers library not found. Standard models won't be available."
|
20 |
+
)
|
21 |
+
|
22 |
+
# Try to import ctransformers for GGUF support
|
23 |
+
try:
|
24 |
+
from ctransformers import AutoModelForCausalLM as CTAutoModelForCausalLM
|
25 |
+
|
26 |
+
HAS_CTRANSFORMERS = True
|
27 |
+
except ImportError:
|
28 |
+
HAS_CTRANSFORMERS = False
|
29 |
+
logger.warning("CTransformers library not found. GGUF models won't be available.")
|
30 |
+
|
31 |
|
32 |
class LocalLLM:
|
33 |
"""
|
34 |
+
A wrapper for running local LLMs using either Hugging Face Transformers or CTransformers.
|
35 |
Optimized for creative prompt expansion and interpretation.
|
36 |
"""
|
37 |
|
38 |
def __init__(
|
39 |
self,
|
40 |
+
model_path: str = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
41 |
+
model_file: str = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
42 |
+
model_type: str = "gguf",
|
43 |
device_map: str = "auto",
|
44 |
torch_dtype=None,
|
45 |
use_quantization: bool = False,
|
|
|
49 |
|
50 |
Args:
|
51 |
model_path: Path to model or HuggingFace model ID
|
52 |
+
model_file: Specific model file to load (for GGUF models)
|
53 |
+
model_type: Type of model ('transformers' or 'gguf')
|
54 |
device_map: Device mapping strategy (default: "auto")
|
55 |
+
torch_dtype: Torch data type (default: float16)
|
56 |
use_quantization: Whether to use 8-bit quantization to reduce memory usage
|
57 |
"""
|
58 |
self.model_path = model_path
|
59 |
+
self.model_file = model_file
|
60 |
+
self.model_type = model_type.lower()
|
61 |
self.device_map = device_map
|
62 |
self.use_quantization = use_quantization
|
63 |
+
self.pipe = None
|
64 |
+
self.model = None
|
65 |
+
self.tokenizer = None
|
66 |
|
67 |
+
# Set torch dtype if using transformers models
|
68 |
+
if torch_dtype is None and self.model_type != "gguf":
|
69 |
+
self.torch_dtype = torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
else:
|
71 |
self.torch_dtype = torch_dtype
|
72 |
|
73 |
logger.info(f"Loading LLM from {model_path}")
|
74 |
+
logger.info(f"Model type: {model_type}, model file: {model_file}")
|
75 |
+
|
76 |
+
# Various loading strategies based on model type
|
77 |
+
if self.model_type == "gguf":
|
78 |
+
self._load_gguf_model()
|
79 |
+
else:
|
80 |
+
self._load_transformers_model()
|
81 |
+
|
82 |
+
def _load_gguf_model(self):
|
83 |
+
"""Load a GGUF model using CTransformers"""
|
84 |
+
if not HAS_CTRANSFORMERS:
|
85 |
+
raise ImportError(
|
86 |
+
"CTransformers library not found but required for GGUF models"
|
87 |
+
)
|
88 |
+
|
89 |
+
try:
|
90 |
+
# Handle spaces and CPU constraints
|
91 |
+
spaces_mode = os.environ.get("HF_SPACES", "0") == "1"
|
92 |
+
|
93 |
+
# Determine model file - either specific file or default
|
94 |
+
if self.model_file:
|
95 |
+
model_file = self.model_file
|
96 |
+
else:
|
97 |
+
model_file = None # Let ctransformers choose default
|
98 |
+
|
99 |
+
# For Hugging Face models with specific files
|
100 |
+
if "/" in self.model_path and self.model_file:
|
101 |
+
logger.info(
|
102 |
+
f"Loading GGUF model from Hugging Face: {self.model_path}/{self.model_file}"
|
103 |
+
)
|
104 |
+
|
105 |
+
# CPU threads based on environment or default to 4
|
106 |
+
cpu_threads = int(os.environ.get("MODEL_CPU_THREADS", "4"))
|
107 |
+
|
108 |
+
# Very optimized settings for spaces
|
109 |
+
if spaces_mode:
|
110 |
+
logger.info("Using optimized settings for Spaces environment")
|
111 |
+
# Use context length of 512 for faster responses
|
112 |
+
context_length = 512
|
113 |
+
# Batch size 512 is good balance for small models
|
114 |
+
batch_size = 512
|
115 |
+
else:
|
116 |
+
# Standard settings for more powerful environments
|
117 |
+
context_length = 2048
|
118 |
+
batch_size = 1024
|
119 |
+
|
120 |
+
logger.info(
|
121 |
+
f"Using context length: {context_length}, batch size: {batch_size}, CPU threads: {cpu_threads}"
|
122 |
+
)
|
123 |
+
|
124 |
+
# Create the model with optimized parameters
|
125 |
+
self.model = CTAutoModelForCausalLM.from_pretrained(
|
126 |
+
self.model_path,
|
127 |
+
model_file=self.model_file,
|
128 |
+
model_type="llama",
|
129 |
+
context_length=context_length,
|
130 |
+
batch_size=batch_size,
|
131 |
+
cpu_threads=cpu_threads,
|
132 |
+
# Add streaming options for better memory usage and fast first token
|
133 |
+
stream=True,
|
134 |
+
reset=True,
|
135 |
+
)
|
136 |
+
|
137 |
+
else:
|
138 |
+
# Local path with model
|
139 |
+
logger.info(f"Loading local GGUF model: {self.model_path}")
|
140 |
+
self.model = CTAutoModelForCausalLM.from_pretrained(
|
141 |
+
self.model_path,
|
142 |
+
model_type="llama",
|
143 |
+
)
|
144 |
+
|
145 |
+
logger.info("GGUF model loaded successfully")
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
logger.error(f"Failed to load GGUF model: {str(e)}")
|
149 |
+
raise
|
150 |
+
|
151 |
+
def _load_transformers_model(self):
|
152 |
+
"""Load a model using Hugging Face transformers"""
|
153 |
+
if not HAS_TRANSFORMERS:
|
154 |
+
raise ImportError(
|
155 |
+
"Transformers library not found but required for standard models"
|
156 |
+
)
|
157 |
|
158 |
try:
|
159 |
# When running in Spaces, we need more conservative settings
|
|
|
174 |
}
|
175 |
)
|
176 |
else:
|
177 |
+
load_kwargs["device_map"] = self.device_map
|
178 |
|
179 |
# In Spaces, use more conservative loading options
|
180 |
if spaces_mode:
|
|
|
189 |
}
|
190 |
)
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
# Skip the custom config handling for Spaces mode or small models
|
193 |
+
if (
|
194 |
+
spaces_mode
|
195 |
+
or "phi" in self.model_path.lower()
|
196 |
+
or "tiny" in self.model_path.lower()
|
197 |
+
):
|
198 |
+
model = AutoModelForCausalLM.from_pretrained(
|
199 |
+
self.model_path, **load_kwargs
|
200 |
+
)
|
201 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
202 |
else:
|
203 |
# Standard local loading with our custom config handling
|
204 |
+
config = AutoConfig.from_pretrained(self.model_path)
|
205 |
|
206 |
# Fix the rope_scaling issue for Llama models
|
207 |
if hasattr(config, "rope_scaling") and isinstance(
|
|
|
211 |
logger.info("Fixed rope_scaling configuration with type=linear")
|
212 |
elif (
|
213 |
not hasattr(config, "rope_scaling")
|
214 |
+
and "llama" in self.model_path.lower()
|
215 |
):
|
216 |
config.rope_scaling = {"type": "linear", "factor": 1.0}
|
217 |
logger.info("Added default rope_scaling configuration")
|
218 |
|
219 |
# Load the tokenizer
|
220 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
221 |
|
222 |
# Load the model with our fixed config
|
223 |
+
model = AutoModelForCausalLM.from_pretrained(
|
224 |
+
self.model_path, config=config, **load_kwargs
|
225 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
# Create the pipeline with our pre-loaded model and tokenizer
|
228 |
self.pipe = pipeline(
|
229 |
"text-generation", model=model, tokenizer=tokenizer, framework="pt"
|
230 |
)
|
231 |
+
self.model = model
|
232 |
+
self.tokenizer = tokenizer
|
233 |
|
234 |
+
logger.info("Transformers model loaded successfully")
|
235 |
|
236 |
except Exception as e:
|
237 |
+
logger.error(f"Failed to load transformers model: {str(e)}")
|
238 |
raise
|
239 |
|
240 |
def generate(
|
|
|
258 |
Returns:
|
259 |
The generated text
|
260 |
"""
|
261 |
+
# Different handling based on model type
|
262 |
+
if self.model_type == "gguf":
|
263 |
+
return self._generate_with_gguf(
|
264 |
+
prompt, system_prompt, max_tokens, temperature, top_p
|
265 |
+
)
|
266 |
+
else:
|
267 |
+
return self._generate_with_transformers(
|
268 |
+
prompt, system_prompt, max_tokens, temperature, top_p
|
269 |
+
)
|
270 |
+
|
271 |
+
def _generate_with_gguf(
|
272 |
+
self,
|
273 |
+
prompt: str,
|
274 |
+
system_prompt: Optional[str] = None,
|
275 |
+
max_tokens: int = 512,
|
276 |
+
temperature: float = 0.7,
|
277 |
+
top_p: float = 0.9,
|
278 |
+
) -> str:
|
279 |
+
"""Generate text using GGUF model"""
|
280 |
+
try:
|
281 |
+
# Format prompt for chat completion
|
282 |
+
formatted_prompt = prompt
|
283 |
+
if system_prompt:
|
284 |
+
# Format system and user prompts for chat
|
285 |
+
formatted_prompt = (
|
286 |
+
f"<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n"
|
287 |
+
)
|
288 |
+
|
289 |
+
# Generate from the GGUF model
|
290 |
+
# Use a slightly more conservative max_new_tokens for spaces
|
291 |
+
spaces_mode = os.environ.get("HF_SPACES", "0") == "1"
|
292 |
+
if spaces_mode:
|
293 |
+
max_tokens = min(max_tokens, 256) # Cap at 256 for faster responses
|
294 |
+
|
295 |
+
start_time = os.times().user
|
296 |
+
response = self.model(
|
297 |
+
formatted_prompt,
|
298 |
+
max_new_tokens=max_tokens,
|
299 |
+
temperature=temperature,
|
300 |
+
top_p=top_p,
|
301 |
+
stop=["<|user|>", "<|system|>", "<|end|>"],
|
302 |
+
)
|
303 |
+
end_time = os.times().user
|
304 |
+
generation_time = end_time - start_time
|
305 |
+
logger.info(f"GGUF generation completed in {generation_time:.2f}s")
|
306 |
+
|
307 |
+
return response
|
308 |
+
|
309 |
+
except Exception as e:
|
310 |
+
logger.error(f"Error during GGUF generation: {str(e)}")
|
311 |
+
return ""
|
312 |
+
|
313 |
+
def _generate_with_transformers(
|
314 |
+
self,
|
315 |
+
prompt: str,
|
316 |
+
system_prompt: Optional[str] = None,
|
317 |
+
max_tokens: int = 512,
|
318 |
+
temperature: float = 0.7,
|
319 |
+
top_p: float = 0.9,
|
320 |
+
) -> str:
|
321 |
+
"""Generate text using transformers pipeline"""
|
322 |
# Format messages for chat-style models
|
323 |
messages = []
|
324 |
|
|
|
346 |
return response
|
347 |
|
348 |
except Exception as e:
|
349 |
+
logger.error(f"Error during transformers generation: {str(e)}")
|
350 |
return ""
|
351 |
|
352 |
def expand_creative_prompt(self, prompt: str) -> str:
|
|
|
394 |
Returns:
|
395 |
A LocalLLM instance or None if model loading fails
|
396 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
use_local_model = os.environ.get("USE_LOCAL_MODEL", "true").lower() != "false"
|
398 |
if not use_local_model:
|
399 |
logger.info("Local model usage is disabled by environment setting")
|
400 |
return None
|
401 |
|
402 |
+
# Default to environment settings with fallbacks
|
403 |
+
if not model_path:
|
404 |
+
model_path = os.environ.get("MODEL_PATH") or os.environ.get(
|
405 |
+
"MODEL_ID", "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
|
406 |
+
)
|
407 |
+
|
408 |
+
# Get model file for GGUF models
|
409 |
+
model_file = os.environ.get("MODEL_FILENAME")
|
410 |
+
|
411 |
+
# Check model type - prefer GGUF for speed in resource-constrained environments
|
412 |
+
model_type = os.environ.get("MODEL_TYPE", "transformers").lower()
|
413 |
+
|
414 |
# Check if quantization is enabled
|
415 |
use_quantization = os.environ.get("MODEL_QUANTIZED", "false").lower() == "true"
|
416 |
|
|
|
425 |
device_map = "auto"
|
426 |
torch_dtype = None
|
427 |
|
428 |
+
# For Hugging Face Spaces, be more careful about memory usage
|
429 |
spaces_mode = os.environ.get("HF_SPACES", "0") == "1"
|
430 |
+
if spaces_mode and model_type != "gguf":
|
431 |
logger.info("Running in Hugging Face Spaces, using CPU for stability")
|
432 |
+
# Force CPU for Spaces with transformers models
|
433 |
device_map = "cpu" if not use_quantization else "auto"
|
434 |
|
435 |
+
# Create the LLM instance with appropriate settings
|
436 |
return LocalLLM(
|
437 |
model_path=model_path,
|
438 |
+
model_file=model_file,
|
439 |
+
model_type=model_type,
|
440 |
device_map=device_map,
|
441 |
torch_dtype=torch_dtype,
|
442 |
use_quantization=use_quantization,
|
requirements-hf.txt
CHANGED
@@ -20,6 +20,7 @@ transformers>=4.43.0
|
|
20 |
torch>=2.0.0
|
21 |
huggingface_hub>=0.16.0
|
22 |
accelerate>=0.21.0
|
|
|
23 |
|
24 |
# API and utilities
|
25 |
fastapi>=0.100.0
|
|
|
20 |
torch>=2.0.0
|
21 |
huggingface_hub>=0.16.0
|
22 |
accelerate>=0.21.0
|
23 |
+
ctransformers>=0.2.24 # For GGUF model support
|
24 |
|
25 |
# API and utilities
|
26 |
fastapi>=0.100.0
|