Spaces:
Runtime error
Runtime error
File size: 6,683 Bytes
6daa32c 58a11df 400d72b 58a11df 400d72b 6daa32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Gradio YOLOv5 Det v0.1
# 创建人:曾逸夫
# 创建时间:2022-04-03
import argparse
import csv
import sys
import gradio as gr
import torch
import yaml
from PIL import Image
from zmq import device
ROOT_PATH = sys.path[0] # 根目录
# 本地模型路径
local_model_path = f"{ROOT_PATH}/yolov5"
# 模型名称临时变量
model_name_tmp = ""
# 设备临时变量
device_tmp = ""
def parse_args(known=False):
parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.1")
parser.add_argument(
"--model_name", "-mn", default="yolov5s", type=str, help="model name"
)
parser.add_argument(
"--model_cfg",
"-mc",
default="./model_config/model_name_p5_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--cls_name",
"-cls",
default="./cls_name/cls_name.yaml",
type=str,
help="cls name",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument(
"--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold"
)
parser.add_argument(
"--label_dnt_show",
"-lds",
action="store_false",
default=True,
help="label show",
)
parser.add_argument(
"--device",
"-dev",
default="0",
type=str,
help="cuda or cpu",
)
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# 模型加载
def model_loading(model_name, device):
# 加载本地模型
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', device=device)
model = torch.hub.load(
"ultralytics/yolov5", model_name, force_reload=True, device=device
)
# model = torch.hub.load(
# local_model_path,
# "custom",
# path=f"{local_model_path}/{model_name}",
# source="local",
# device=device,
# )
return model
# 检测信息
def export_json(results, model, img_size):
return [
[
{
"id": int(i),
"class": int(result[i][5]),
"class_name": model.model.names[int(result[i][5])],
"normalized_box": {
"x0": round(result[i][:4].tolist()[0], 6),
"y0": round(result[i][:4].tolist()[1], 6),
"x1": round(result[i][:4].tolist()[2], 6),
"y1": round(result[i][:4].tolist()[3], 6),
},
"confidence": round(float(result[i][4]), 2),
"fps": round(1000 / float(results.t[1]), 2),
"width": img_size[0],
"height": img_size[1],
}
for i in range(len(result))
]
for result in results.xyxyn
]
# YOLOv5图片检测函数
def yolo_det(img, device, model_name, conf, iou, label_opt, model_cls):
global model, model_name_tmp, device_tmp
if model_name_tmp != model_name:
# 模型判断,避免反复加载
model_name_tmp = model_name
model = model_loading(model_name_tmp, device)
elif device_tmp != device:
device_tmp = device
model = model_loading(model_name_tmp, device)
# -----------模型调参-----------
model.conf = conf # NMS 置信度阈值
model.iou = iou # NMS IOU阈值
model.max_det = 1000 # 最大检测框数
model.classes = model_cls # 模型类别
results = model(img) # 检测
results.render(labels=label_opt) # 渲染
det_img = Image.fromarray(results.imgs[0]) # 检测图片
det_json = export_json(results, model, img.size)[0] # 检测信息
return det_img, det_json
# yaml文件解析
def yaml_parse(file_path):
return yaml.load(
open(file_path, "r", encoding="utf-8").read(), Loader=yaml.FullLoader
)
def main(args):
global model
slider_step = 0.05 # 滑动步长
nms_conf = args.nms_conf
nms_iou = args.nms_iou
label_opt = args.label_dnt_show
model_name = args.model_name
model_cfg = args.model_cfg
cls_name = args.cls_name
device = args.device
# 模型加载
model = model_loading(model_name, device)
# 模型名称
# model_names = [i[0] for i in list(csv.reader(open(model_cfg)))] # csv版
model_names = yaml_parse(model_cfg).get("model_names") # yaml版
# 类别名称
# model_cls_name = [i[0] for i in list(csv.reader(open(cls_name)))] # csv版
model_cls_name = yaml_parse(cls_name).get("model_cls_name") # yaml版
# -------------------输入组件-------------------
inputs_img = gr.inputs.Image(type="pil", label="原始图片")
device = gr.inputs.Dropdown(
choices=["0", "cpu"], default=device, type="value", label="设备"
)
inputs_model = gr.inputs.Dropdown(
choices=model_names, default=model_name, type="value", label="模型"
)
input_conf = gr.inputs.Slider(
0, 1, step=slider_step, default=nms_conf, label="置信度阈值"
)
inputs_iou = gr.inputs.Slider(
0, 1, step=slider_step, default=nms_iou, label="IoU 阈值"
)
inputs_label = gr.inputs.Checkbox(default=label_opt, label="标签显示")
inputs_clsName = gr.inputs.CheckboxGroup(
choices=model_cls_name, default=model_cls_name, type="index", label="类别"
)
# 输入参数
inputs = [
inputs_img, # 输入图片
device, # 设备
inputs_model, # 模型
input_conf, # 置信度阈值
inputs_iou, # IoU阈值
inputs_label, # 标签显示
inputs_clsName, # 类别
]
# 输出参数
outputs = gr.outputs.Image(type="pil", label="检测图片")
outputs02 = gr.outputs.JSON(label="检测信息")
# 标题
title = "基于Gradio的YOLOv5通用目标检测系统"
# 描述
description = "<div align='center'>可自定义目标检测模型、安装简单、使用方便</div>"
gr.close_all()
# 接口
gr.Interface(
fn=yolo_det,
inputs=inputs,
outputs=[outputs, outputs02],
title=title,
description=description,
theme="seafoam",
# live=True, # 实时变更输出
flagging_dir="run" # 输出目录
# ).launch(inbrowser=True, auth=['admin', 'admin'])
).launch(
inbrowser=True, # 自动打开默认浏览器
show_tips=True, # 自动显示gradio最新功能
favicon_path="./icon/logo.ico",
)
if __name__ == "__main__":
args = parse_args()
main(args)
|