OminiControl_Art / ominicontrol.py
Yuanshi's picture
Update ominicontrol.py
46fd9d7 verified
raw
history blame
3.97 kB
import torch
from diffusers.pipelines import FluxPipeline
from OminiControl.src.flux.condition import Condition
from PIL import Image
import random
from OminiControl.src.flux.generate import generate, seed_everything
from log import insert_log, log_image
print("Loading model...")
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")
pipe.unload_lora_weights()
pipe.load_lora_weights(
"Yuanshi/OminiControlStyle",
weight_name=f"v0/ghibli.safetensors",
adapter_name="ghibli",
)
pipe.load_lora_weights(
"Yuanshi/OminiControlStyle",
weight_name=f"v0/irasutoya.safetensors",
adapter_name="irasutoya",
)
pipe.load_lora_weights(
"Yuanshi/OminiControlStyle",
weight_name=f"v0/simpsons.safetensors",
adapter_name="simpsons",
)
pipe.load_lora_weights(
"Yuanshi/OminiControlStyle",
weight_name=f"v0/snoopy.safetensors",
adapter_name="snoopy",
)
def generate_image(
image,
style,
inference_mode,
image_guidance,
image_ratio,
steps,
use_random_seed,
seed,
):
condition_id = log_image(image)
# Prepare Condition
def resize(img, factor=16):
w, h = img.size
new_w, new_h = w // factor * factor, h // factor * factor
padding_w, padding_h = (w - new_w) // 2, (h - new_h) // 2
img = img.crop((padding_w, padding_h, new_w + padding_w, new_h + padding_h))
return img
# Set Adapter
activate_adapter_name = {
"Studio Ghibli": "ghibli",
"Irasutoya Illustration": "irasutoya",
"The Simpsons": "simpsons",
"Snoopy": "snoopy",
}[style]
pipe.set_adapters(activate_adapter_name)
factor = 512 / max(image.size)
image = resize(
image.resize(
(int(image.size[0] * factor), int(image.size[1] * factor)),
Image.LANCZOS,
)
)
delta = -image.size[0] // 16
condition = Condition(
"subject",
# activate_adapter_name,
image,
position_delta=(0, delta),
)
# Prepare seed
if use_random_seed:
seed = random.randint(0, 2**32 - 1)
seed_everything(seed)
# Image guidance scale
image_guidance = 1.0 if inference_mode == "Fast" else image_guidance
# Output size
if image_ratio == "Auto":
r = image.size[0] / image.size[1]
ratio = min([0.67, 1, 1.5], key=lambda x: abs(x - r))
else:
ratio = {
"Square(1:1)": 1,
"Portrait(2:3)": 0.67,
"Landscape(3:2)": 1.5,
}[image_ratio]
width, height = {
0.67: (640, 960),
1: (640, 640),
1.5: (960, 640),
}[ratio]
print(
f"Image Ratio: {image_ratio}, Inference Mode: {inference_mode}, Image Guidance: {image_guidance}, Seed: {seed}, Steps: {steps}, Size: {width}x{height}"
)
# Generate
result_img = generate(
pipe,
prompt="",
conditions=[condition],
num_inference_steps=steps,
width=width,
height=height,
image_guidance_scale=image_guidance,
default_lora=True,
max_sequence_length=32,
).images[0]
# result_img = image
result_id = log_image(result_img)
log_data = {
"condition": condition_id,
"result": result_id,
"prompt": "",
"inference_mode": inference_mode,
"image_guidance_scale": image_guidance,
"seed": seed,
"steps": steps,
"style": style,
"width": width,
"height": height,
}
log_data = {k: str(v) for k, v in log_data.items()}
_, log_id = insert_log("inference", log_data)
print(f"Image log ID: {log_id}")
return result_img, log_id
def vote_feedback(
log_id,
feedback,
):
log_data = {
"log_id": log_id,
"feedback": feedback,
}
log_data = {k: str(v) for k, v in log_data.items()}
insert_log("feedback", log_data)