Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,969 Bytes
9fbf1b0 5d0e4e9 9fbf1b0 5d0e4e9 9fbf1b0 46fd9d7 9fbf1b0 8528685 9fbf1b0 5d0e4e9 8528685 5d0e4e9 9fbf1b0 5d0e4e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import torch
from diffusers.pipelines import FluxPipeline
from OminiControl.src.flux.condition import Condition
from PIL import Image
import random
from OminiControl.src.flux.generate import generate, seed_everything
from log import insert_log, log_image
print("Loading model...")
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")
pipe.unload_lora_weights()
pipe.load_lora_weights(
"Yuanshi/OminiControlStyle",
weight_name=f"v0/ghibli.safetensors",
adapter_name="ghibli",
)
pipe.load_lora_weights(
"Yuanshi/OminiControlStyle",
weight_name=f"v0/irasutoya.safetensors",
adapter_name="irasutoya",
)
pipe.load_lora_weights(
"Yuanshi/OminiControlStyle",
weight_name=f"v0/simpsons.safetensors",
adapter_name="simpsons",
)
pipe.load_lora_weights(
"Yuanshi/OminiControlStyle",
weight_name=f"v0/snoopy.safetensors",
adapter_name="snoopy",
)
def generate_image(
image,
style,
inference_mode,
image_guidance,
image_ratio,
steps,
use_random_seed,
seed,
):
condition_id = log_image(image)
# Prepare Condition
def resize(img, factor=16):
w, h = img.size
new_w, new_h = w // factor * factor, h // factor * factor
padding_w, padding_h = (w - new_w) // 2, (h - new_h) // 2
img = img.crop((padding_w, padding_h, new_w + padding_w, new_h + padding_h))
return img
# Set Adapter
activate_adapter_name = {
"Studio Ghibli": "ghibli",
"Irasutoya Illustration": "irasutoya",
"The Simpsons": "simpsons",
"Snoopy": "snoopy",
}[style]
pipe.set_adapters(activate_adapter_name)
factor = 512 / max(image.size)
image = resize(
image.resize(
(int(image.size[0] * factor), int(image.size[1] * factor)),
Image.LANCZOS,
)
)
delta = -image.size[0] // 16
condition = Condition(
"subject",
# activate_adapter_name,
image,
position_delta=(0, delta),
)
# Prepare seed
if use_random_seed:
seed = random.randint(0, 2**32 - 1)
seed_everything(seed)
# Image guidance scale
image_guidance = 1.0 if inference_mode == "Fast" else image_guidance
# Output size
if image_ratio == "Auto":
r = image.size[0] / image.size[1]
ratio = min([0.67, 1, 1.5], key=lambda x: abs(x - r))
else:
ratio = {
"Square(1:1)": 1,
"Portrait(2:3)": 0.67,
"Landscape(3:2)": 1.5,
}[image_ratio]
width, height = {
0.67: (640, 960),
1: (640, 640),
1.5: (960, 640),
}[ratio]
print(
f"Image Ratio: {image_ratio}, Inference Mode: {inference_mode}, Image Guidance: {image_guidance}, Seed: {seed}, Steps: {steps}, Size: {width}x{height}"
)
# Generate
result_img = generate(
pipe,
prompt="",
conditions=[condition],
num_inference_steps=steps,
width=width,
height=height,
image_guidance_scale=image_guidance,
default_lora=True,
max_sequence_length=32,
).images[0]
# result_img = image
result_id = log_image(result_img)
log_data = {
"condition": condition_id,
"result": result_id,
"prompt": "",
"inference_mode": inference_mode,
"image_guidance_scale": image_guidance,
"seed": seed,
"steps": steps,
"style": style,
"width": width,
"height": height,
}
log_data = {k: str(v) for k, v in log_data.items()}
_, log_id = insert_log("inference", log_data)
print(f"Image log ID: {log_id}")
return result_img, log_id
def vote_feedback(
log_id,
feedback,
):
log_data = {
"log_id": log_id,
"feedback": feedback,
}
log_data = {k: str(v) for k, v in log_data.items()}
insert_log("feedback", log_data)
|