File size: 3,969 Bytes
9fbf1b0
 
 
 
 
 
 
 
5d0e4e9
9fbf1b0
 
 
5d0e4e9
9fbf1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46fd9d7
 
 
9fbf1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8528685
9fbf1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d0e4e9
 
 
 
 
 
 
 
 
 
 
8528685
5d0e4e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fbf1b0
5d0e4e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
from diffusers.pipelines import FluxPipeline
from OminiControl.src.flux.condition import Condition
from PIL import Image
import random

from OminiControl.src.flux.generate import generate, seed_everything

from log import insert_log, log_image

print("Loading model...")
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")

pipe.unload_lora_weights()

pipe.load_lora_weights(
    "Yuanshi/OminiControlStyle",
    weight_name=f"v0/ghibli.safetensors",
    adapter_name="ghibli",
)
pipe.load_lora_weights(
    "Yuanshi/OminiControlStyle",
    weight_name=f"v0/irasutoya.safetensors",
    adapter_name="irasutoya",
)
pipe.load_lora_weights(
    "Yuanshi/OminiControlStyle",
    weight_name=f"v0/simpsons.safetensors",
    adapter_name="simpsons",
)
pipe.load_lora_weights(
    "Yuanshi/OminiControlStyle",
    weight_name=f"v0/snoopy.safetensors",
    adapter_name="snoopy",
)


def generate_image(
    image,
    style,
    inference_mode,
    image_guidance,
    image_ratio,
    steps,
    use_random_seed,
    seed,
):  
    condition_id = log_image(image)

    # Prepare Condition
    def resize(img, factor=16):
        w, h = img.size
        new_w, new_h = w // factor * factor, h // factor * factor
        padding_w, padding_h = (w - new_w) // 2, (h - new_h) // 2
        img = img.crop((padding_w, padding_h, new_w + padding_w, new_h + padding_h))
        return img

    # Set Adapter
    activate_adapter_name = {
        "Studio Ghibli": "ghibli",
        "Irasutoya Illustration": "irasutoya",
        "The Simpsons": "simpsons",
        "Snoopy": "snoopy",
    }[style]
    pipe.set_adapters(activate_adapter_name)

    factor = 512 / max(image.size)
    image = resize(
        image.resize(
            (int(image.size[0] * factor), int(image.size[1] * factor)),
            Image.LANCZOS,
        )
    )
    delta = -image.size[0] // 16
    condition = Condition(
        "subject",
        # activate_adapter_name,
        image,
        position_delta=(0, delta),
    )

    # Prepare seed
    if use_random_seed:
        seed = random.randint(0, 2**32 - 1)
    seed_everything(seed)

    # Image guidance scale
    image_guidance = 1.0 if inference_mode == "Fast" else image_guidance

    # Output size
    if image_ratio == "Auto":
        r = image.size[0] / image.size[1]
        ratio = min([0.67, 1, 1.5], key=lambda x: abs(x - r))
    else:
        ratio = {
            "Square(1:1)": 1,
            "Portrait(2:3)": 0.67,
            "Landscape(3:2)": 1.5,
        }[image_ratio]
    width, height = {
        0.67: (640, 960),
        1: (640, 640),
        1.5: (960, 640),
    }[ratio]

    print(
        f"Image Ratio: {image_ratio}, Inference Mode: {inference_mode}, Image Guidance: {image_guidance}, Seed: {seed}, Steps: {steps}, Size: {width}x{height}"
    )
    # Generate
    result_img = generate(
        pipe,
        prompt="",
        conditions=[condition],
        num_inference_steps=steps,
        width=width,
        height=height,
        image_guidance_scale=image_guidance,
        default_lora=True,
        max_sequence_length=32,
    ).images[0]
    # result_img = image
    result_id = log_image(result_img)

    log_data = {
        "condition": condition_id,
        "result": result_id,
        "prompt": "",
        "inference_mode": inference_mode,
        "image_guidance_scale": image_guidance,
        "seed": seed,
        "steps": steps,
        "style": style,
        "width": width,
        "height": height,
    }
    log_data = {k: str(v) for k, v in log_data.items()}

    _, log_id = insert_log("inference", log_data)

    print(f"Image log ID: {log_id}")

    return result_img, log_id


def vote_feedback(
    log_id,
    feedback,
):
    log_data = {
        "log_id": log_id,
        "feedback": feedback,
    }
    log_data = {k: str(v) for k, v in log_data.items()}

    insert_log("feedback", log_data)