Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,13 +15,156 @@ df['MedHouseVal'] = california.target
|
|
15 |
X = df[['MedInc']]
|
16 |
y = df['MedHouseVal']
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Split the data into training and testing sets
|
19 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
model = LinearRegression()
|
|
|
|
|
23 |
model.fit(X_train, y_train)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Save the model
|
26 |
with open("linear_regression_model.pkl", "wb") as file:
|
27 |
pickle.dump(model, file)
|
@@ -30,14 +173,40 @@ with open("linear_regression_model.pkl", "wb") as file:
|
|
30 |
with open("linear_regression_model.pkl", "rb") as file:
|
31 |
model = pickle.load(file)
|
32 |
|
33 |
-
#
|
34 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
if st.button('Predict'):
|
39 |
-
|
40 |
-
prediction = model.predict(
|
41 |
st.write(f'Predicted Median House Value: {prediction[0]}')
|
42 |
|
43 |
# Display data
|
|
|
15 |
X = df[['MedInc']]
|
16 |
y = df['MedHouseVal']
|
17 |
|
18 |
+
# Pairplot to visualize relationships between features and the target
|
19 |
+
plt.show()
|
20 |
+
|
21 |
+
|
22 |
+
plt.figure(figsize=(10, 8))
|
23 |
+
plt.show()
|
24 |
+
|
25 |
+
# Scatter plot for specific features against the target variable
|
26 |
+
features = ['MedInc', 'AveRooms', 'AveOccup', 'HouseAge']
|
27 |
+
for feature in features:
|
28 |
+
plt.figure(figsize=(6, 4))
|
29 |
+
plt.scatter(df[feature], df['MedHouseVal'], alpha=0.3)
|
30 |
+
plt.title(f'MedHouseVal vs {feature}')
|
31 |
+
plt.xlabel(feature)
|
32 |
+
plt.ylabel('MedHouseVal')
|
33 |
+
plt.show()
|
34 |
+
#5
|
35 |
+
# Select the predictor and target variable
|
36 |
+
X = df[['MedInc']]
|
37 |
+
y = df['MedHouseVal']
|
38 |
+
|
39 |
# Split the data into training and testing sets
|
40 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
41 |
+
print("Training and testing data split done.")
|
42 |
+
|
43 |
+
#6 7 and 8
|
44 |
+
#lineare regression model
|
45 |
+
model = LinearRegression()
|
46 |
+
|
47 |
+
# Fitting the model on the training data
|
48 |
+
model.fit(X_train, y_train)
|
49 |
+
|
50 |
+
# Making predictions on the test data
|
51 |
+
y_pred = model.predict(X_test)
|
52 |
+
|
53 |
+
# Evaluating the model
|
54 |
+
mse = mean_squared_error(y_test, y_pred)
|
55 |
+
r2 = r2_score(y_test, y_pred)
|
56 |
+
|
57 |
+
print(f"Mean Squared Error: {mse}")
|
58 |
+
print(f"R-squared: {r2}")
|
59 |
+
|
60 |
+
# Plot the regression line
|
61 |
+
plt.figure(figsize=(8, 6))
|
62 |
+
plt.scatter(X_test, y_test, color='blue', alpha=0.3, label='Actual')
|
63 |
+
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted')
|
64 |
+
plt.title('Simple Linear Regression: MedInc vs MedHouseVal')
|
65 |
+
plt.xlabel('MedInc')
|
66 |
+
plt.ylabel('MedHouseVal')
|
67 |
+
plt.legend()
|
68 |
+
plt.show()
|
69 |
+
|
70 |
+
#Split the data into training (80%) and testing (20%) sets
|
71 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
72 |
+
|
73 |
+
# Print the sizes of the training and testing sets
|
74 |
+
print(f"Training set size: {X_train.shape[0]} samples")
|
75 |
+
print(f"Testing set size: {X_test.shape[0]} samples")
|
76 |
|
77 |
+
# Create the linear regression model
|
78 |
model = LinearRegression()
|
79 |
+
|
80 |
+
# Fit the model on the training data
|
81 |
model.fit(X_train, y_train)
|
82 |
|
83 |
+
# Print the coefficients
|
84 |
+
print(f"Coefficients: {model.coef_}")
|
85 |
+
print(f"Intercept: {model.intercept_}")
|
86 |
+
|
87 |
+
# Make predictions on the test data
|
88 |
+
y_pred = model.predict(X_test)
|
89 |
+
|
90 |
+
# Calculate RMSE and R-squared
|
91 |
+
mse = mean_squared_error(y_test, y_pred)
|
92 |
+
rmse = np.sqrt(mse)
|
93 |
+
r2 = r2_score(y_test, y_pred)
|
94 |
+
|
95 |
+
print(f"Root Mean Squared Error (RMSE): {rmse}")
|
96 |
+
print(f"R-squared: {r2}")
|
97 |
+
|
98 |
+
# Scatter plot of actual vs. predicted values
|
99 |
+
plt.figure(figsize=(8, 6))
|
100 |
+
plt.scatter(y_test, y_pred, color='blue', alpha=0.3)
|
101 |
+
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2, color='green')
|
102 |
+
plt.title('Multilinear Regression: Actual vs. Predicted MedHouseVal')
|
103 |
+
plt.xlabel('Actual MedHouseVal')
|
104 |
+
plt.ylabel('Predicted MedHouseVal')
|
105 |
+
plt.show()
|
106 |
+
|
107 |
+
#comparing the performance between RMSE and R-squared values
|
108 |
+
# Simple Linear Regression
|
109 |
+
# Select a single predictor
|
110 |
+
X_single = df[['MedInc']]
|
111 |
+
y = df['MedHouseVal']
|
112 |
+
|
113 |
+
# Split the data into training and testing sets
|
114 |
+
X_train_single, X_test_single, y_train_single, y_test_single = train_test_split(X_single, y, test_size=0.2, random_state=42)
|
115 |
+
|
116 |
+
# Create the linear regression model
|
117 |
+
model_single = LinearRegression()
|
118 |
+
|
119 |
+
# Fit the model on the training data
|
120 |
+
model_single.fit(X_train_single, y_train_single)
|
121 |
+
|
122 |
+
# Make predictions on the test data
|
123 |
+
y_pred_single = model_single.predict(X_test_single)
|
124 |
+
|
125 |
+
# Evaluate the model
|
126 |
+
mse_single = mean_squared_error(y_test_single, y_pred_single)
|
127 |
+
rmse_single = np.sqrt(mse_single)
|
128 |
+
r2_single = r2_score(y_test_single, y_pred_single)
|
129 |
+
|
130 |
+
print(f"Simple Linear Regression - RMSE: {rmse_single}")
|
131 |
+
print(f"Simple Linear Regression - R-squared: {r2_single}")
|
132 |
+
|
133 |
+
# Multilinear Regression
|
134 |
+
# Select multiple predictors
|
135 |
+
X_multi = df[['MedInc', 'AveRooms', 'HouseAge', 'AveOccup']]
|
136 |
+
y = df['MedHouseVal']
|
137 |
+
|
138 |
+
# Split the data into training and testing sets
|
139 |
+
X_train_multi, X_test_multi, y_train_multi, y_test_multi = train_test_split(X_multi, y, test_size=0.2, random_state=42)
|
140 |
+
|
141 |
+
# Create the linear regression model
|
142 |
+
model_multi = LinearRegression()
|
143 |
+
|
144 |
+
# Fit the model on the training data
|
145 |
+
model_multi.fit(X_train_multi, y_train_multi)
|
146 |
+
|
147 |
+
# Make predictions on the test data
|
148 |
+
y_pred_multi = model_multi.predict(X_test_multi)
|
149 |
+
|
150 |
+
# Evaluate the model
|
151 |
+
mse_multi = mean_squared_error(y_test_multi, y_pred_multi)
|
152 |
+
rmse_multi = np.sqrt(mse_multi)
|
153 |
+
r2_multi = r2_score(y_test_multi, y_pred_multi)
|
154 |
+
|
155 |
+
print(f"Multilinear Regression - RMSE: {rmse_multi}")
|
156 |
+
print(f"Multilinear Regression - R-squared: {r2_multi}")
|
157 |
+
|
158 |
+
#Residual Plot for Multilinear Regression
|
159 |
+
residuals = y_test_multi - y_pred_multi
|
160 |
+
plt.figure(figsize=(8, 6))
|
161 |
+
plt.scatter(y_pred_multi, residuals, color='blue', alpha=0.3)
|
162 |
+
plt.hlines(y=0, xmin=y_pred_multi.min(), xmax=y_pred_multi.max(), colors='red', linestyles='--', lw=2)
|
163 |
+
plt.title('Residual Plot: Multilinear Regression')
|
164 |
+
plt.xlabel('Predicted MedHouseVal')
|
165 |
+
plt.ylabel('Residuals')
|
166 |
+
plt.show()
|
167 |
+
|
168 |
# Save the model
|
169 |
with open("linear_regression_model.pkl", "wb") as file:
|
170 |
pickle.dump(model, file)
|
|
|
173 |
with open("linear_regression_model.pkl", "rb") as file:
|
174 |
model = pickle.load(file)
|
175 |
|
176 |
+
# Sidebar for user input features
|
177 |
+
st.sidebar.header('User Input Features')
|
178 |
+
selected_feature = st.sidebar.selectbox('Select feature for visualization', df.columns)
|
179 |
+
selected_target = st.sidebar.selectbox('Select target variable', df.columns)
|
180 |
+
|
181 |
+
# Display the raw data if checkbox is selected
|
182 |
+
if st.checkbox('Show raw data'):
|
183 |
+
st.write(df)
|
184 |
+
|
185 |
+
# Visualization of selected feature
|
186 |
+
st.subheader(f'Distribution of {selected_feature}')
|
187 |
+
plt.figure(figsize=(10, 6))
|
188 |
+
plt.hist(df[selected_feature], bins=30, edgecolor='black')
|
189 |
+
st.pyplot(plt)
|
190 |
+
|
191 |
+
# Scatter plot of selected feature vs target
|
192 |
+
st.subheader(f'Scatter plot of {selected_feature} vs {selected_target}')
|
193 |
+
plt.figure(figsize=(10, 6))
|
194 |
+
plt.scatter(df[selected_feature], df[selected_target], alpha=0.3)
|
195 |
+
plt.xlabel(selected_feature)
|
196 |
+
plt.ylabel(selected_target)
|
197 |
+
st.pyplot(plt)
|
198 |
+
|
199 |
+
# Prediction
|
200 |
+
st.subheader('Predict Median House Value')
|
201 |
|
202 |
+
# Input values for prediction
|
203 |
+
input_values = {}
|
204 |
+
for feature in X.columns:
|
205 |
+
input_values[feature] = st.number_input(f'Enter {feature}', value=float(df[feature].mean()))
|
206 |
|
207 |
if st.button('Predict'):
|
208 |
+
input_data = np.array([list(input_values.values())])
|
209 |
+
prediction = model.predict(input_data)
|
210 |
st.write(f'Predicted Median House Value: {prediction[0]}')
|
211 |
|
212 |
# Display data
|