Nesbitt
commited on
Commit
·
4068b97
1
Parent(s):
4068279
Initial Commit
Browse files- README.md +74 -13
- app.py +143 -0
- demucs3/demucs.py +447 -0
- demucs3/hdemucs.py +782 -0
- demucs3/htdemucs.py +648 -0
- demucs3/spec.py +41 -0
- demucs3/states.py +148 -0
- demucs3/transformer.py +839 -0
- demucs3/utils.py +141 -0
- demucs4/demucs.py +447 -0
- demucs4/hdemucs.py +782 -0
- demucs4/htdemucs.py +648 -0
- demucs4/spec.py +41 -0
- demucs4/states.py +148 -0
- demucs4/transformer.py +839 -0
- demucs4/utils.py +141 -0
- gui.py +411 -0
- images/MVSep-Window.png +0 -0
- inference.py +920 -0
- models/.gitkeep +1 -0
- requirements.txt +12 -0
README.md
CHANGED
@@ -1,13 +1,74 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MVSEP-MDX23-music-separation-model
|
2 |
+
Model for [Sound demixing challenge 2023: Music Demixing Track - MDX'23](https://www.aicrowd.com/challenges/sound-demixing-challenge-2023). Model perform separation of music into 4 stems "bass", "drums", "vocals", "other". Model won 3rd place in challenge (Leaderboard C).
|
3 |
+
|
4 |
+
Model based on [Demucs4](https://github.com/facebookresearch/demucs), [MDX](https://github.com/kuielab/mdx-net) neural net architectures and some MDX weights from [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui) project (thanks [Kimberley Jensen](https://github.com/KimberleyJensen) for great high quality vocal models). Brought to you by [MVSep.com](https://mvsep.com).
|
5 |
+
## Usage
|
6 |
+
|
7 |
+
```
|
8 |
+
python inference.py --input_audio mixture1.wav mixture2.wav --output_folder ./results/
|
9 |
+
```
|
10 |
+
|
11 |
+
With this command audios with names "mixture1.wav" and "mixture2.wav" will be processed and results will be stored in `./results/` folder in WAV format.
|
12 |
+
|
13 |
+
### All available keys
|
14 |
+
* `--input_audio` - input audio location. You can provide multiple files at once. **Required**
|
15 |
+
* `--output_folder` - output audio folder. **Required**
|
16 |
+
* `--cpu` - choose CPU instead of GPU for processing. Can be very slow.
|
17 |
+
* `--overlap_large` - overlap of splitted audio for light models. Closer to 1.0 - slower, but better quality. Default: 0.6.
|
18 |
+
* `--overlap_small` - overlap of splitted audio for heavy models. Closer to 1.0 - slower, but better quality. Default: 0.5.
|
19 |
+
* `--single_onnx` - only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.
|
20 |
+
* `--chunk_size` - chunk size for ONNX models. Set lower to reduce GPU memory consumption. Default: 1000000.
|
21 |
+
* `--large_gpu` - it will store all models on GPU for faster processing of multiple audio files. Requires at least 11 GB of free GPU memory.
|
22 |
+
* `--use_kim_model_1` - use first version of Kim model (as it was on contest).
|
23 |
+
* `--only_vocals` - only create vocals and instrumental. Skip bass, drums, other. Processing will be faster.
|
24 |
+
|
25 |
+
### Notes
|
26 |
+
* If you have not enough GPU memory you can use CPU (`--cpu`), but it will be slow. Additionally you can use single ONNX (`--single_onnx`), but it will decrease quality a little bit. Also reduce of chunk size can help (`--chunk_size 200000`).
|
27 |
+
* In current revision code requires less GPU memory, but it process multiple files slower. If you want old fast method use argument `--large_gpu`. It will require > 11 GB of GPU memory, but will work faster.
|
28 |
+
* There is [Google.Collab version](https://colab.research.google.com/github/jarredou/MVSEP-MDX23-Colab_v2/blob/main/MVSep-MDX23-Colab.ipynb) of this code.
|
29 |
+
|
30 |
+
## Quality comparison
|
31 |
+
|
32 |
+
Quality comparison with best separation models performed on [MultiSong Dataset](https://mvsep.com/quality_checker/leaderboard2.php?sort=bass).
|
33 |
+
|
34 |
+
| Algorithm | SDR bass | SDR drums | SDR other | SDR vocals | SDR instrumental |
|
35 |
+
| ------------- |:---------:|:----------:|:----------:|:----------:|:------------------:|
|
36 |
+
| MVSEP MDX23 | 12.5034 | 11.6870 | 6.5378 | 9.5138 | 15.8213 |
|
37 |
+
| Demucs HT 4 | 12.1006 | 11.3037 | 5.7728 | 8.3555 | 13.9902 |
|
38 |
+
| Demucs 3 | 10.6947 | 10.2744 | 5.3580 | 8.1335 | 14.4409 |
|
39 |
+
| MDX B | --- | ---- | --- | 8.5118 | 14.8192 |
|
40 |
+
|
41 |
+
* Note: SDR - signal to distortion ratio. Larger is better.
|
42 |
+
|
43 |
+
## GUI
|
44 |
+
|
45 |
+

|
46 |
+
|
47 |
+
* Script for GUI (based on PyQt5): [gui.py](gui.py).
|
48 |
+
* You can download [standalone program for Windows here](https://github.com/ZFTurbo/MVSEP-MDX23-music-separation-model/releases/download/v1.0.1/MVSep-MDX23_v1.0.1.zip) (~730 MB). Unzip archive and to start program double click `run.bat`. On first run it will download pytorch with CUDA support (~2.8 GB) and some Neural Net models.
|
49 |
+
* Program will download all needed neural net models from internet at the first run.
|
50 |
+
* GUI supports Drag & Drop of multiple files.
|
51 |
+
* Progress bar available.
|
52 |
+
|
53 |
+
## Changes
|
54 |
+
|
55 |
+
### v1.0.1
|
56 |
+
* Settings in GUI updated, now you can control all possible options
|
57 |
+
* Kim vocal model updated from version 1 to version 2, you still can use version 1 using parameter `--use_kim_model_1`
|
58 |
+
* Added possibility to generate only vocals/instrumental pair if you don't need bass, drums and other stems. Use parameter `--only_vocals`
|
59 |
+
* Standalone program was updated. It has less size now. GUI will download torch/cuda on the first run.
|
60 |
+
|
61 |
+
## Citation
|
62 |
+
|
63 |
+
* [arxiv paper](https://arxiv.org/abs/2305.07489)
|
64 |
+
|
65 |
+
```
|
66 |
+
@misc{solovyev2023benchmarks,
|
67 |
+
title={Benchmarks and leaderboards for sound demixing tasks},
|
68 |
+
author={Roman Solovyev and Alexander Stempkovskiy and Tatiana Habruseva},
|
69 |
+
year={2023},
|
70 |
+
eprint={2305.07489},
|
71 |
+
archivePrefix={arXiv},
|
72 |
+
primaryClass={cs.SD}
|
73 |
+
}
|
74 |
+
```
|
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import soundfile as sf
|
4 |
+
import numpy as np
|
5 |
+
import tempfile
|
6 |
+
from scipy.io import wavfile
|
7 |
+
from pytube import YouTube
|
8 |
+
from gradio import Interface, components as gr
|
9 |
+
from moviepy.editor import AudioFileClip
|
10 |
+
from inference import EnsembleDemucsMDXMusicSeparationModel, predict_with_model
|
11 |
+
import torch
|
12 |
+
|
13 |
+
def download_youtube_video_as_wav(youtube_url):
|
14 |
+
output_dir = "downloads"
|
15 |
+
os.makedirs(output_dir, exist_ok=True)
|
16 |
+
output_file = os.path.join(output_dir, "temp.mp4")
|
17 |
+
|
18 |
+
try:
|
19 |
+
yt = YouTube(youtube_url)
|
20 |
+
yt.streams.filter(only_audio=True).first().download(filename=output_file)
|
21 |
+
print("Download completed successfully.")
|
22 |
+
except Exception as e:
|
23 |
+
print(f"An error occurred while downloading the video: {e}")
|
24 |
+
return None
|
25 |
+
|
26 |
+
# Convert mp4 audio to wav
|
27 |
+
wav_file = os.path.join(output_dir, "mixture.wav")
|
28 |
+
clip = AudioFileClip(output_file)
|
29 |
+
clip.write_audiofile(wav_file)
|
30 |
+
|
31 |
+
return wav_file
|
32 |
+
|
33 |
+
|
34 |
+
def check_file_readiness(filepath):
|
35 |
+
num_same_size_checks = 0
|
36 |
+
last_size = -1
|
37 |
+
|
38 |
+
while num_same_size_checks < 5:
|
39 |
+
current_size = os.path.getsize(filepath)
|
40 |
+
|
41 |
+
if current_size == last_size:
|
42 |
+
num_same_size_checks += 1
|
43 |
+
else:
|
44 |
+
num_same_size_checks = 0
|
45 |
+
last_size = current_size
|
46 |
+
|
47 |
+
time.sleep(1)
|
48 |
+
|
49 |
+
# If the loop finished, it means the file size has not changed for 5 seconds
|
50 |
+
# which indicates that the file is ready
|
51 |
+
return True
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
def separate_music_file_wrapper(input_string, use_cpu, use_single_onnx, large_overlap, small_overlap, chunk_size, use_large_gpu):
|
56 |
+
input_files = []
|
57 |
+
|
58 |
+
if input_string.startswith("https://www.youtube.com") or input_string.startswith("https://youtu.be"):
|
59 |
+
output_file = download_youtube_video_as_wav(input_string)
|
60 |
+
if output_file is not None:
|
61 |
+
input_files.append(output_file)
|
62 |
+
elif os.path.isdir(input_string):
|
63 |
+
input_directory = input_string
|
64 |
+
input_files = [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith('.wav')]
|
65 |
+
else:
|
66 |
+
raise ValueError("Invalid input! Please provide a valid YouTube link or a directory path.")
|
67 |
+
|
68 |
+
options = {
|
69 |
+
'input_audio': input_files,
|
70 |
+
'output_folder': 'results',
|
71 |
+
'cpu': use_cpu,
|
72 |
+
'single_onnx': use_single_onnx,
|
73 |
+
'overlap_large': large_overlap,
|
74 |
+
'overlap_small': small_overlap,
|
75 |
+
'chunk_size': chunk_size,
|
76 |
+
'large_gpu': use_large_gpu,
|
77 |
+
}
|
78 |
+
|
79 |
+
predict_with_model(options)
|
80 |
+
|
81 |
+
# Clear GPU cache
|
82 |
+
if torch.cuda.is_available():
|
83 |
+
torch.cuda.empty_cache()
|
84 |
+
|
85 |
+
output_files = {}
|
86 |
+
for f in input_files:
|
87 |
+
audio_file_name = os.path.splitext(os.path.basename(f))[0]
|
88 |
+
output_files["vocals"] = os.path.join(options['output_folder'], audio_file_name + "_vocals.wav")
|
89 |
+
output_files["instrumental"] = os.path.join(options['output_folder'], audio_file_name + "_instrum.wav")
|
90 |
+
output_files["instrumental2"] = os.path.join(options['output_folder'], audio_file_name + "_instrum2.wav") # For the second instrumental output
|
91 |
+
output_files["bass"] = os.path.join(options['output_folder'], audio_file_name + "_bass.wav")
|
92 |
+
output_files["drums"] = os.path.join(options['output_folder'], audio_file_name + "_drums.wav")
|
93 |
+
output_files["other"] = os.path.join(options['output_folder'], audio_file_name + "_other.wav")
|
94 |
+
|
95 |
+
|
96 |
+
# Check the readiness of the files
|
97 |
+
output_files_ready = []
|
98 |
+
for k, v in output_files.items():
|
99 |
+
if os.path.exists(v) and check_file_readiness(v):
|
100 |
+
output_files_ready.append(v)
|
101 |
+
else:
|
102 |
+
empty_data = np.zeros((44100, 2)) # 2 channels, 1 second of silence at 44100Hz
|
103 |
+
empty_file = tempfile.mktemp('.wav')
|
104 |
+
wavfile.write(empty_file, 44100, empty_data.astype(np.int16)) # Cast to int16 as wavfile does not support float32
|
105 |
+
output_files_ready.append(empty_file)
|
106 |
+
|
107 |
+
return tuple(output_files_ready)
|
108 |
+
|
109 |
+
description = """
|
110 |
+
# ZFTurbo Web-UI
|
111 |
+
Web-UI by [Ma5onic](https://github.com/Ma5onic)
|
112 |
+
## Options:
|
113 |
+
- **Use CPU Only:** Select this if you have not enough GPU memory. It will be slower.
|
114 |
+
- **Use Single ONNX:** Select this to use a single ONNX model. It will decrease quality a little bit but can help with GPU memory usage.
|
115 |
+
- **Large Overlap:** The overlap for large chunks. Adjust as needed.
|
116 |
+
- **Small Overlap:** The overlap for small chunks. Adjust as needed.
|
117 |
+
- **Chunk Size:** The size of chunks to be processed at a time. Reduce this if facing memory issues.
|
118 |
+
- **Use Fast Large GPU Version:** Select this to use the old fast method that requires > 11 GB of GPU memory. It will work faster.
|
119 |
+
"""
|
120 |
+
|
121 |
+
iface = Interface(
|
122 |
+
fn=separate_music_file_wrapper,
|
123 |
+
inputs=[
|
124 |
+
gr.Text(label="Input Directory or YouTube Link"),
|
125 |
+
gr.Checkbox(label="Use CPU Only", value=False),
|
126 |
+
gr.Checkbox(label="Use Single ONNX", value=False),
|
127 |
+
gr.Number(label="Large Overlap", value=0.6),
|
128 |
+
gr.Number(label="Small Overlap", value=0.5),
|
129 |
+
gr.Number(label="Chunk Size", value=1000000),
|
130 |
+
gr.Checkbox(label="Use Fast Large GPU Version", value=False)
|
131 |
+
],
|
132 |
+
outputs=[
|
133 |
+
gr.Audio(label="Vocals"),
|
134 |
+
gr.Audio(label="Instrumental"),
|
135 |
+
gr.Audio(label="Instrumental 2"),
|
136 |
+
gr.Audio(label="Bass"),
|
137 |
+
gr.Audio(label="Drums"),
|
138 |
+
gr.Audio(label="Other"),
|
139 |
+
],
|
140 |
+
description=description,
|
141 |
+
)
|
142 |
+
|
143 |
+
iface.queue().launch(debug=True, share=False)
|
demucs3/demucs.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
import typing as tp
|
9 |
+
|
10 |
+
import julius
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import functional as F
|
14 |
+
|
15 |
+
from .states import capture_init
|
16 |
+
from .utils import center_trim, unfold
|
17 |
+
from .transformer import LayerScale
|
18 |
+
|
19 |
+
|
20 |
+
class BLSTM(nn.Module):
|
21 |
+
"""
|
22 |
+
BiLSTM with same hidden units as input dim.
|
23 |
+
If `max_steps` is not None, input will be splitting in overlapping
|
24 |
+
chunks and the LSTM applied separately on each chunk.
|
25 |
+
"""
|
26 |
+
def __init__(self, dim, layers=1, max_steps=None, skip=False):
|
27 |
+
super().__init__()
|
28 |
+
assert max_steps is None or max_steps % 4 == 0
|
29 |
+
self.max_steps = max_steps
|
30 |
+
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
|
31 |
+
self.linear = nn.Linear(2 * dim, dim)
|
32 |
+
self.skip = skip
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
B, C, T = x.shape
|
36 |
+
y = x
|
37 |
+
framed = False
|
38 |
+
if self.max_steps is not None and T > self.max_steps:
|
39 |
+
width = self.max_steps
|
40 |
+
stride = width // 2
|
41 |
+
frames = unfold(x, width, stride)
|
42 |
+
nframes = frames.shape[2]
|
43 |
+
framed = True
|
44 |
+
x = frames.permute(0, 2, 1, 3).reshape(-1, C, width)
|
45 |
+
|
46 |
+
x = x.permute(2, 0, 1)
|
47 |
+
|
48 |
+
x = self.lstm(x)[0]
|
49 |
+
x = self.linear(x)
|
50 |
+
x = x.permute(1, 2, 0)
|
51 |
+
if framed:
|
52 |
+
out = []
|
53 |
+
frames = x.reshape(B, -1, C, width)
|
54 |
+
limit = stride // 2
|
55 |
+
for k in range(nframes):
|
56 |
+
if k == 0:
|
57 |
+
out.append(frames[:, k, :, :-limit])
|
58 |
+
elif k == nframes - 1:
|
59 |
+
out.append(frames[:, k, :, limit:])
|
60 |
+
else:
|
61 |
+
out.append(frames[:, k, :, limit:-limit])
|
62 |
+
out = torch.cat(out, -1)
|
63 |
+
out = out[..., :T]
|
64 |
+
x = out
|
65 |
+
if self.skip:
|
66 |
+
x = x + y
|
67 |
+
return x
|
68 |
+
|
69 |
+
|
70 |
+
def rescale_conv(conv, reference):
|
71 |
+
"""Rescale initial weight scale. It is unclear why it helps but it certainly does.
|
72 |
+
"""
|
73 |
+
std = conv.weight.std().detach()
|
74 |
+
scale = (std / reference)**0.5
|
75 |
+
conv.weight.data /= scale
|
76 |
+
if conv.bias is not None:
|
77 |
+
conv.bias.data /= scale
|
78 |
+
|
79 |
+
|
80 |
+
def rescale_module(module, reference):
|
81 |
+
for sub in module.modules():
|
82 |
+
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d, nn.Conv2d, nn.ConvTranspose2d)):
|
83 |
+
rescale_conv(sub, reference)
|
84 |
+
|
85 |
+
|
86 |
+
class DConv(nn.Module):
|
87 |
+
"""
|
88 |
+
New residual branches in each encoder layer.
|
89 |
+
This alternates dilated convolutions, potentially with LSTMs and attention.
|
90 |
+
Also before entering each residual branch, dimension is projected on a smaller subspace,
|
91 |
+
e.g. of dim `channels // compress`.
|
92 |
+
"""
|
93 |
+
def __init__(self, channels: int, compress: float = 4, depth: int = 2, init: float = 1e-4,
|
94 |
+
norm=True, attn=False, heads=4, ndecay=4, lstm=False, gelu=True,
|
95 |
+
kernel=3, dilate=True):
|
96 |
+
"""
|
97 |
+
Args:
|
98 |
+
channels: input/output channels for residual branch.
|
99 |
+
compress: amount of channel compression inside the branch.
|
100 |
+
depth: number of layers in the residual branch. Each layer has its own
|
101 |
+
projection, and potentially LSTM and attention.
|
102 |
+
init: initial scale for LayerNorm.
|
103 |
+
norm: use GroupNorm.
|
104 |
+
attn: use LocalAttention.
|
105 |
+
heads: number of heads for the LocalAttention.
|
106 |
+
ndecay: number of decay controls in the LocalAttention.
|
107 |
+
lstm: use LSTM.
|
108 |
+
gelu: Use GELU activation.
|
109 |
+
kernel: kernel size for the (dilated) convolutions.
|
110 |
+
dilate: if true, use dilation, increasing with the depth.
|
111 |
+
"""
|
112 |
+
|
113 |
+
super().__init__()
|
114 |
+
assert kernel % 2 == 1
|
115 |
+
self.channels = channels
|
116 |
+
self.compress = compress
|
117 |
+
self.depth = abs(depth)
|
118 |
+
dilate = depth > 0
|
119 |
+
|
120 |
+
norm_fn: tp.Callable[[int], nn.Module]
|
121 |
+
norm_fn = lambda d: nn.Identity() # noqa
|
122 |
+
if norm:
|
123 |
+
norm_fn = lambda d: nn.GroupNorm(1, d) # noqa
|
124 |
+
|
125 |
+
hidden = int(channels / compress)
|
126 |
+
|
127 |
+
act: tp.Type[nn.Module]
|
128 |
+
if gelu:
|
129 |
+
act = nn.GELU
|
130 |
+
else:
|
131 |
+
act = nn.ReLU
|
132 |
+
|
133 |
+
self.layers = nn.ModuleList([])
|
134 |
+
for d in range(self.depth):
|
135 |
+
dilation = 2 ** d if dilate else 1
|
136 |
+
padding = dilation * (kernel // 2)
|
137 |
+
mods = [
|
138 |
+
nn.Conv1d(channels, hidden, kernel, dilation=dilation, padding=padding),
|
139 |
+
norm_fn(hidden), act(),
|
140 |
+
nn.Conv1d(hidden, 2 * channels, 1),
|
141 |
+
norm_fn(2 * channels), nn.GLU(1),
|
142 |
+
LayerScale(channels, init),
|
143 |
+
]
|
144 |
+
if attn:
|
145 |
+
mods.insert(3, LocalState(hidden, heads=heads, ndecay=ndecay))
|
146 |
+
if lstm:
|
147 |
+
mods.insert(3, BLSTM(hidden, layers=2, max_steps=200, skip=True))
|
148 |
+
layer = nn.Sequential(*mods)
|
149 |
+
self.layers.append(layer)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
for layer in self.layers:
|
153 |
+
x = x + layer(x)
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class LocalState(nn.Module):
|
158 |
+
"""Local state allows to have attention based only on data (no positional embedding),
|
159 |
+
but while setting a constraint on the time window (e.g. decaying penalty term).
|
160 |
+
|
161 |
+
Also a failed experiments with trying to provide some frequency based attention.
|
162 |
+
"""
|
163 |
+
def __init__(self, channels: int, heads: int = 4, nfreqs: int = 0, ndecay: int = 4):
|
164 |
+
super().__init__()
|
165 |
+
assert channels % heads == 0, (channels, heads)
|
166 |
+
self.heads = heads
|
167 |
+
self.nfreqs = nfreqs
|
168 |
+
self.ndecay = ndecay
|
169 |
+
self.content = nn.Conv1d(channels, channels, 1)
|
170 |
+
self.query = nn.Conv1d(channels, channels, 1)
|
171 |
+
self.key = nn.Conv1d(channels, channels, 1)
|
172 |
+
if nfreqs:
|
173 |
+
self.query_freqs = nn.Conv1d(channels, heads * nfreqs, 1)
|
174 |
+
if ndecay:
|
175 |
+
self.query_decay = nn.Conv1d(channels, heads * ndecay, 1)
|
176 |
+
# Initialize decay close to zero (there is a sigmoid), for maximum initial window.
|
177 |
+
self.query_decay.weight.data *= 0.01
|
178 |
+
assert self.query_decay.bias is not None # stupid type checker
|
179 |
+
self.query_decay.bias.data[:] = -2
|
180 |
+
self.proj = nn.Conv1d(channels + heads * nfreqs, channels, 1)
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
B, C, T = x.shape
|
184 |
+
heads = self.heads
|
185 |
+
indexes = torch.arange(T, device=x.device, dtype=x.dtype)
|
186 |
+
# left index are keys, right index are queries
|
187 |
+
delta = indexes[:, None] - indexes[None, :]
|
188 |
+
|
189 |
+
queries = self.query(x).view(B, heads, -1, T)
|
190 |
+
keys = self.key(x).view(B, heads, -1, T)
|
191 |
+
# t are keys, s are queries
|
192 |
+
dots = torch.einsum("bhct,bhcs->bhts", keys, queries)
|
193 |
+
dots /= keys.shape[2]**0.5
|
194 |
+
if self.nfreqs:
|
195 |
+
periods = torch.arange(1, self.nfreqs + 1, device=x.device, dtype=x.dtype)
|
196 |
+
freq_kernel = torch.cos(2 * math.pi * delta / periods.view(-1, 1, 1))
|
197 |
+
freq_q = self.query_freqs(x).view(B, heads, -1, T) / self.nfreqs ** 0.5
|
198 |
+
dots += torch.einsum("fts,bhfs->bhts", freq_kernel, freq_q)
|
199 |
+
if self.ndecay:
|
200 |
+
decays = torch.arange(1, self.ndecay + 1, device=x.device, dtype=x.dtype)
|
201 |
+
decay_q = self.query_decay(x).view(B, heads, -1, T)
|
202 |
+
decay_q = torch.sigmoid(decay_q) / 2
|
203 |
+
decay_kernel = - decays.view(-1, 1, 1) * delta.abs() / self.ndecay**0.5
|
204 |
+
dots += torch.einsum("fts,bhfs->bhts", decay_kernel, decay_q)
|
205 |
+
|
206 |
+
# Kill self reference.
|
207 |
+
dots.masked_fill_(torch.eye(T, device=dots.device, dtype=torch.bool), -100)
|
208 |
+
weights = torch.softmax(dots, dim=2)
|
209 |
+
|
210 |
+
content = self.content(x).view(B, heads, -1, T)
|
211 |
+
result = torch.einsum("bhts,bhct->bhcs", weights, content)
|
212 |
+
if self.nfreqs:
|
213 |
+
time_sig = torch.einsum("bhts,fts->bhfs", weights, freq_kernel)
|
214 |
+
result = torch.cat([result, time_sig], 2)
|
215 |
+
result = result.reshape(B, -1, T)
|
216 |
+
return x + self.proj(result)
|
217 |
+
|
218 |
+
|
219 |
+
class Demucs(nn.Module):
|
220 |
+
@capture_init
|
221 |
+
def __init__(self,
|
222 |
+
sources,
|
223 |
+
# Channels
|
224 |
+
audio_channels=2,
|
225 |
+
channels=64,
|
226 |
+
growth=2.,
|
227 |
+
# Main structure
|
228 |
+
depth=6,
|
229 |
+
rewrite=True,
|
230 |
+
lstm_layers=0,
|
231 |
+
# Convolutions
|
232 |
+
kernel_size=8,
|
233 |
+
stride=4,
|
234 |
+
context=1,
|
235 |
+
# Activations
|
236 |
+
gelu=True,
|
237 |
+
glu=True,
|
238 |
+
# Normalization
|
239 |
+
norm_starts=4,
|
240 |
+
norm_groups=4,
|
241 |
+
# DConv residual branch
|
242 |
+
dconv_mode=1,
|
243 |
+
dconv_depth=2,
|
244 |
+
dconv_comp=4,
|
245 |
+
dconv_attn=4,
|
246 |
+
dconv_lstm=4,
|
247 |
+
dconv_init=1e-4,
|
248 |
+
# Pre/post processing
|
249 |
+
normalize=True,
|
250 |
+
resample=True,
|
251 |
+
# Weight init
|
252 |
+
rescale=0.1,
|
253 |
+
# Metadata
|
254 |
+
samplerate=44100,
|
255 |
+
segment=4 * 10):
|
256 |
+
"""
|
257 |
+
Args:
|
258 |
+
sources (list[str]): list of source names
|
259 |
+
audio_channels (int): stereo or mono
|
260 |
+
channels (int): first convolution channels
|
261 |
+
depth (int): number of encoder/decoder layers
|
262 |
+
growth (float): multiply (resp divide) number of channels by that
|
263 |
+
for each layer of the encoder (resp decoder)
|
264 |
+
depth (int): number of layers in the encoder and in the decoder.
|
265 |
+
rewrite (bool): add 1x1 convolution to each layer.
|
266 |
+
lstm_layers (int): number of lstm layers, 0 = no lstm. Deactivated
|
267 |
+
by default, as this is now replaced by the smaller and faster small LSTMs
|
268 |
+
in the DConv branches.
|
269 |
+
kernel_size (int): kernel size for convolutions
|
270 |
+
stride (int): stride for convolutions
|
271 |
+
context (int): kernel size of the convolution in the
|
272 |
+
decoder before the transposed convolution. If > 1,
|
273 |
+
will provide some context from neighboring time steps.
|
274 |
+
gelu: use GELU activation function.
|
275 |
+
glu (bool): use glu instead of ReLU for the 1x1 rewrite conv.
|
276 |
+
norm_starts: layer at which group norm starts being used.
|
277 |
+
decoder layers are numbered in reverse order.
|
278 |
+
norm_groups: number of groups for group norm.
|
279 |
+
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
280 |
+
dconv_depth: depth of residual DConv branch.
|
281 |
+
dconv_comp: compression of DConv branch.
|
282 |
+
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
283 |
+
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
284 |
+
dconv_init: initial scale for the DConv branch LayerScale.
|
285 |
+
normalize (bool): normalizes the input audio on the fly, and scales back
|
286 |
+
the output by the same amount.
|
287 |
+
resample (bool): upsample x2 the input and downsample /2 the output.
|
288 |
+
rescale (int): rescale initial weights of convolutions
|
289 |
+
to get their standard deviation closer to `rescale`.
|
290 |
+
samplerate (int): stored as meta information for easing
|
291 |
+
future evaluations of the model.
|
292 |
+
segment (float): duration of the chunks of audio to ideally evaluate the model on.
|
293 |
+
This is used by `demucs.apply.apply_model`.
|
294 |
+
"""
|
295 |
+
|
296 |
+
super().__init__()
|
297 |
+
self.audio_channels = audio_channels
|
298 |
+
self.sources = sources
|
299 |
+
self.kernel_size = kernel_size
|
300 |
+
self.context = context
|
301 |
+
self.stride = stride
|
302 |
+
self.depth = depth
|
303 |
+
self.resample = resample
|
304 |
+
self.channels = channels
|
305 |
+
self.normalize = normalize
|
306 |
+
self.samplerate = samplerate
|
307 |
+
self.segment = segment
|
308 |
+
self.encoder = nn.ModuleList()
|
309 |
+
self.decoder = nn.ModuleList()
|
310 |
+
self.skip_scales = nn.ModuleList()
|
311 |
+
|
312 |
+
if glu:
|
313 |
+
activation = nn.GLU(dim=1)
|
314 |
+
ch_scale = 2
|
315 |
+
else:
|
316 |
+
activation = nn.ReLU()
|
317 |
+
ch_scale = 1
|
318 |
+
if gelu:
|
319 |
+
act2 = nn.GELU
|
320 |
+
else:
|
321 |
+
act2 = nn.ReLU
|
322 |
+
|
323 |
+
in_channels = audio_channels
|
324 |
+
padding = 0
|
325 |
+
for index in range(depth):
|
326 |
+
norm_fn = lambda d: nn.Identity() # noqa
|
327 |
+
if index >= norm_starts:
|
328 |
+
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
329 |
+
|
330 |
+
encode = []
|
331 |
+
encode += [
|
332 |
+
nn.Conv1d(in_channels, channels, kernel_size, stride),
|
333 |
+
norm_fn(channels),
|
334 |
+
act2(),
|
335 |
+
]
|
336 |
+
attn = index >= dconv_attn
|
337 |
+
lstm = index >= dconv_lstm
|
338 |
+
if dconv_mode & 1:
|
339 |
+
encode += [DConv(channels, depth=dconv_depth, init=dconv_init,
|
340 |
+
compress=dconv_comp, attn=attn, lstm=lstm)]
|
341 |
+
if rewrite:
|
342 |
+
encode += [
|
343 |
+
nn.Conv1d(channels, ch_scale * channels, 1),
|
344 |
+
norm_fn(ch_scale * channels), activation]
|
345 |
+
self.encoder.append(nn.Sequential(*encode))
|
346 |
+
|
347 |
+
decode = []
|
348 |
+
if index > 0:
|
349 |
+
out_channels = in_channels
|
350 |
+
else:
|
351 |
+
out_channels = len(self.sources) * audio_channels
|
352 |
+
if rewrite:
|
353 |
+
decode += [
|
354 |
+
nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context),
|
355 |
+
norm_fn(ch_scale * channels), activation]
|
356 |
+
if dconv_mode & 2:
|
357 |
+
decode += [DConv(channels, depth=dconv_depth, init=dconv_init,
|
358 |
+
compress=dconv_comp, attn=attn, lstm=lstm)]
|
359 |
+
decode += [nn.ConvTranspose1d(channels, out_channels,
|
360 |
+
kernel_size, stride, padding=padding)]
|
361 |
+
if index > 0:
|
362 |
+
decode += [norm_fn(out_channels), act2()]
|
363 |
+
self.decoder.insert(0, nn.Sequential(*decode))
|
364 |
+
in_channels = channels
|
365 |
+
channels = int(growth * channels)
|
366 |
+
|
367 |
+
channels = in_channels
|
368 |
+
if lstm_layers:
|
369 |
+
self.lstm = BLSTM(channels, lstm_layers)
|
370 |
+
else:
|
371 |
+
self.lstm = None
|
372 |
+
|
373 |
+
if rescale:
|
374 |
+
rescale_module(self, reference=rescale)
|
375 |
+
|
376 |
+
def valid_length(self, length):
|
377 |
+
"""
|
378 |
+
Return the nearest valid length to use with the model so that
|
379 |
+
there is no time steps left over in a convolution, e.g. for all
|
380 |
+
layers, size of the input - kernel_size % stride = 0.
|
381 |
+
|
382 |
+
Note that input are automatically padded if necessary to ensure that the output
|
383 |
+
has the same length as the input.
|
384 |
+
"""
|
385 |
+
if self.resample:
|
386 |
+
length *= 2
|
387 |
+
|
388 |
+
for _ in range(self.depth):
|
389 |
+
length = math.ceil((length - self.kernel_size) / self.stride) + 1
|
390 |
+
length = max(1, length)
|
391 |
+
|
392 |
+
for idx in range(self.depth):
|
393 |
+
length = (length - 1) * self.stride + self.kernel_size
|
394 |
+
|
395 |
+
if self.resample:
|
396 |
+
length = math.ceil(length / 2)
|
397 |
+
return int(length)
|
398 |
+
|
399 |
+
def forward(self, mix):
|
400 |
+
x = mix
|
401 |
+
length = x.shape[-1]
|
402 |
+
|
403 |
+
if self.normalize:
|
404 |
+
mono = mix.mean(dim=1, keepdim=True)
|
405 |
+
mean = mono.mean(dim=-1, keepdim=True)
|
406 |
+
std = mono.std(dim=-1, keepdim=True)
|
407 |
+
x = (x - mean) / (1e-5 + std)
|
408 |
+
else:
|
409 |
+
mean = 0
|
410 |
+
std = 1
|
411 |
+
|
412 |
+
delta = self.valid_length(length) - length
|
413 |
+
x = F.pad(x, (delta // 2, delta - delta // 2))
|
414 |
+
|
415 |
+
if self.resample:
|
416 |
+
x = julius.resample_frac(x, 1, 2)
|
417 |
+
|
418 |
+
saved = []
|
419 |
+
for encode in self.encoder:
|
420 |
+
x = encode(x)
|
421 |
+
saved.append(x)
|
422 |
+
|
423 |
+
if self.lstm:
|
424 |
+
x = self.lstm(x)
|
425 |
+
|
426 |
+
for decode in self.decoder:
|
427 |
+
skip = saved.pop(-1)
|
428 |
+
skip = center_trim(skip, x)
|
429 |
+
x = decode(x + skip)
|
430 |
+
|
431 |
+
if self.resample:
|
432 |
+
x = julius.resample_frac(x, 2, 1)
|
433 |
+
x = x * std + mean
|
434 |
+
x = center_trim(x, length)
|
435 |
+
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1))
|
436 |
+
return x
|
437 |
+
|
438 |
+
def load_state_dict(self, state, strict=True):
|
439 |
+
# fix a mismatch with previous generation Demucs models.
|
440 |
+
for idx in range(self.depth):
|
441 |
+
for a in ['encoder', 'decoder']:
|
442 |
+
for b in ['bias', 'weight']:
|
443 |
+
new = f'{a}.{idx}.3.{b}'
|
444 |
+
old = f'{a}.{idx}.2.{b}'
|
445 |
+
if old in state and new not in state:
|
446 |
+
state[new] = state.pop(old)
|
447 |
+
super().load_state_dict(state, strict=strict)
|
demucs3/hdemucs.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""
|
7 |
+
This code contains the spectrogram and Hybrid version of Demucs.
|
8 |
+
"""
|
9 |
+
from copy import deepcopy
|
10 |
+
import math
|
11 |
+
import typing as tp
|
12 |
+
|
13 |
+
from openunmix.filtering import wiener
|
14 |
+
import torch
|
15 |
+
from torch import nn
|
16 |
+
from torch.nn import functional as F
|
17 |
+
|
18 |
+
from .demucs import DConv, rescale_module
|
19 |
+
from .states import capture_init
|
20 |
+
from .spec import spectro, ispectro
|
21 |
+
|
22 |
+
|
23 |
+
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
|
24 |
+
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
25 |
+
If this is the case, we insert extra 0 padding to the right before the reflection happen."""
|
26 |
+
x0 = x
|
27 |
+
length = x.shape[-1]
|
28 |
+
padding_left, padding_right = paddings
|
29 |
+
if mode == 'reflect':
|
30 |
+
max_pad = max(padding_left, padding_right)
|
31 |
+
if length <= max_pad:
|
32 |
+
extra_pad = max_pad - length + 1
|
33 |
+
extra_pad_right = min(padding_right, extra_pad)
|
34 |
+
extra_pad_left = extra_pad - extra_pad_right
|
35 |
+
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right)
|
36 |
+
x = F.pad(x, (extra_pad_left, extra_pad_right))
|
37 |
+
out = F.pad(x, paddings, mode, value)
|
38 |
+
assert out.shape[-1] == length + padding_left + padding_right
|
39 |
+
assert (out[..., padding_left: padding_left + length] == x0).all()
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
class ScaledEmbedding(nn.Module):
|
44 |
+
"""
|
45 |
+
Boost learning rate for embeddings (with `scale`).
|
46 |
+
Also, can make embeddings continuous with `smooth`.
|
47 |
+
"""
|
48 |
+
def __init__(self, num_embeddings: int, embedding_dim: int,
|
49 |
+
scale: float = 10., smooth=False):
|
50 |
+
super().__init__()
|
51 |
+
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
52 |
+
if smooth:
|
53 |
+
weight = torch.cumsum(self.embedding.weight.data, dim=0)
|
54 |
+
# when summing gaussian, overscale raises as sqrt(n), so we nornalize by that.
|
55 |
+
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None]
|
56 |
+
self.embedding.weight.data[:] = weight
|
57 |
+
self.embedding.weight.data /= scale
|
58 |
+
self.scale = scale
|
59 |
+
|
60 |
+
@property
|
61 |
+
def weight(self):
|
62 |
+
return self.embedding.weight * self.scale
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
out = self.embedding(x) * self.scale
|
66 |
+
return out
|
67 |
+
|
68 |
+
|
69 |
+
class HEncLayer(nn.Module):
|
70 |
+
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False,
|
71 |
+
freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True,
|
72 |
+
rewrite=True):
|
73 |
+
"""Encoder layer. This used both by the time and the frequency branch.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
chin: number of input channels.
|
77 |
+
chout: number of output channels.
|
78 |
+
norm_groups: number of groups for group norm.
|
79 |
+
empty: used to make a layer with just the first conv. this is used
|
80 |
+
before merging the time and freq. branches.
|
81 |
+
freq: this is acting on frequencies.
|
82 |
+
dconv: insert DConv residual branches.
|
83 |
+
norm: use GroupNorm.
|
84 |
+
context: context size for the 1x1 conv.
|
85 |
+
dconv_kw: list of kwargs for the DConv class.
|
86 |
+
pad: pad the input. Padding is done so that the output size is
|
87 |
+
always the input size / stride.
|
88 |
+
rewrite: add 1x1 conv at the end of the layer.
|
89 |
+
"""
|
90 |
+
super().__init__()
|
91 |
+
norm_fn = lambda d: nn.Identity() # noqa
|
92 |
+
if norm:
|
93 |
+
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
94 |
+
if pad:
|
95 |
+
pad = kernel_size // 4
|
96 |
+
else:
|
97 |
+
pad = 0
|
98 |
+
klass = nn.Conv1d
|
99 |
+
self.freq = freq
|
100 |
+
self.kernel_size = kernel_size
|
101 |
+
self.stride = stride
|
102 |
+
self.empty = empty
|
103 |
+
self.norm = norm
|
104 |
+
self.pad = pad
|
105 |
+
if freq:
|
106 |
+
kernel_size = [kernel_size, 1]
|
107 |
+
stride = [stride, 1]
|
108 |
+
pad = [pad, 0]
|
109 |
+
klass = nn.Conv2d
|
110 |
+
self.conv = klass(chin, chout, kernel_size, stride, pad)
|
111 |
+
if self.empty:
|
112 |
+
return
|
113 |
+
self.norm1 = norm_fn(chout)
|
114 |
+
self.rewrite = None
|
115 |
+
if rewrite:
|
116 |
+
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context)
|
117 |
+
self.norm2 = norm_fn(2 * chout)
|
118 |
+
|
119 |
+
self.dconv = None
|
120 |
+
if dconv:
|
121 |
+
self.dconv = DConv(chout, **dconv_kw)
|
122 |
+
|
123 |
+
def forward(self, x, inject=None):
|
124 |
+
"""
|
125 |
+
`inject` is used to inject the result from the time branch into the frequency branch,
|
126 |
+
when both have the same stride.
|
127 |
+
"""
|
128 |
+
if not self.freq and x.dim() == 4:
|
129 |
+
B, C, Fr, T = x.shape
|
130 |
+
x = x.view(B, -1, T)
|
131 |
+
|
132 |
+
if not self.freq:
|
133 |
+
le = x.shape[-1]
|
134 |
+
if not le % self.stride == 0:
|
135 |
+
x = F.pad(x, (0, self.stride - (le % self.stride)))
|
136 |
+
y = self.conv(x)
|
137 |
+
if self.empty:
|
138 |
+
return y
|
139 |
+
if inject is not None:
|
140 |
+
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape)
|
141 |
+
if inject.dim() == 3 and y.dim() == 4:
|
142 |
+
inject = inject[:, :, None]
|
143 |
+
y = y + inject
|
144 |
+
y = F.gelu(self.norm1(y))
|
145 |
+
if self.dconv:
|
146 |
+
if self.freq:
|
147 |
+
B, C, Fr, T = y.shape
|
148 |
+
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
|
149 |
+
y = self.dconv(y)
|
150 |
+
if self.freq:
|
151 |
+
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
|
152 |
+
if self.rewrite:
|
153 |
+
z = self.norm2(self.rewrite(y))
|
154 |
+
z = F.glu(z, dim=1)
|
155 |
+
else:
|
156 |
+
z = y
|
157 |
+
return z
|
158 |
+
|
159 |
+
|
160 |
+
class MultiWrap(nn.Module):
|
161 |
+
"""
|
162 |
+
Takes one layer and replicate it N times. each replica will act
|
163 |
+
on a frequency band. All is done so that if the N replica have the same weights,
|
164 |
+
then this is exactly equivalent to applying the original module on all frequencies.
|
165 |
+
|
166 |
+
This is a bit over-engineered to avoid edge artifacts when splitting
|
167 |
+
the frequency bands, but it is possible the naive implementation would work as well...
|
168 |
+
"""
|
169 |
+
def __init__(self, layer, split_ratios):
|
170 |
+
"""
|
171 |
+
Args:
|
172 |
+
layer: module to clone, must be either HEncLayer or HDecLayer.
|
173 |
+
split_ratios: list of float indicating which ratio to keep for each band.
|
174 |
+
"""
|
175 |
+
super().__init__()
|
176 |
+
self.split_ratios = split_ratios
|
177 |
+
self.layers = nn.ModuleList()
|
178 |
+
self.conv = isinstance(layer, HEncLayer)
|
179 |
+
assert not layer.norm
|
180 |
+
assert layer.freq
|
181 |
+
assert layer.pad
|
182 |
+
if not self.conv:
|
183 |
+
assert not layer.context_freq
|
184 |
+
for k in range(len(split_ratios) + 1):
|
185 |
+
lay = deepcopy(layer)
|
186 |
+
if self.conv:
|
187 |
+
lay.conv.padding = (0, 0)
|
188 |
+
else:
|
189 |
+
lay.pad = False
|
190 |
+
for m in lay.modules():
|
191 |
+
if hasattr(m, 'reset_parameters'):
|
192 |
+
m.reset_parameters()
|
193 |
+
self.layers.append(lay)
|
194 |
+
|
195 |
+
def forward(self, x, skip=None, length=None):
|
196 |
+
B, C, Fr, T = x.shape
|
197 |
+
|
198 |
+
ratios = list(self.split_ratios) + [1]
|
199 |
+
start = 0
|
200 |
+
outs = []
|
201 |
+
for ratio, layer in zip(ratios, self.layers):
|
202 |
+
if self.conv:
|
203 |
+
pad = layer.kernel_size // 4
|
204 |
+
if ratio == 1:
|
205 |
+
limit = Fr
|
206 |
+
frames = -1
|
207 |
+
else:
|
208 |
+
limit = int(round(Fr * ratio))
|
209 |
+
le = limit - start
|
210 |
+
if start == 0:
|
211 |
+
le += pad
|
212 |
+
frames = round((le - layer.kernel_size) / layer.stride + 1)
|
213 |
+
limit = start + (frames - 1) * layer.stride + layer.kernel_size
|
214 |
+
if start == 0:
|
215 |
+
limit -= pad
|
216 |
+
assert limit - start > 0, (limit, start)
|
217 |
+
assert limit <= Fr, (limit, Fr)
|
218 |
+
y = x[:, :, start:limit, :]
|
219 |
+
if start == 0:
|
220 |
+
y = F.pad(y, (0, 0, pad, 0))
|
221 |
+
if ratio == 1:
|
222 |
+
y = F.pad(y, (0, 0, 0, pad))
|
223 |
+
outs.append(layer(y))
|
224 |
+
start = limit - layer.kernel_size + layer.stride
|
225 |
+
else:
|
226 |
+
if ratio == 1:
|
227 |
+
limit = Fr
|
228 |
+
else:
|
229 |
+
limit = int(round(Fr * ratio))
|
230 |
+
last = layer.last
|
231 |
+
layer.last = True
|
232 |
+
|
233 |
+
y = x[:, :, start:limit]
|
234 |
+
s = skip[:, :, start:limit]
|
235 |
+
out, _ = layer(y, s, None)
|
236 |
+
if outs:
|
237 |
+
outs[-1][:, :, -layer.stride:] += (
|
238 |
+
out[:, :, :layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1))
|
239 |
+
out = out[:, :, layer.stride:]
|
240 |
+
if ratio == 1:
|
241 |
+
out = out[:, :, :-layer.stride // 2, :]
|
242 |
+
if start == 0:
|
243 |
+
out = out[:, :, layer.stride // 2:, :]
|
244 |
+
outs.append(out)
|
245 |
+
layer.last = last
|
246 |
+
start = limit
|
247 |
+
out = torch.cat(outs, dim=2)
|
248 |
+
if not self.conv and not last:
|
249 |
+
out = F.gelu(out)
|
250 |
+
if self.conv:
|
251 |
+
return out
|
252 |
+
else:
|
253 |
+
return out, None
|
254 |
+
|
255 |
+
|
256 |
+
class HDecLayer(nn.Module):
|
257 |
+
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False,
|
258 |
+
freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True,
|
259 |
+
context_freq=True, rewrite=True):
|
260 |
+
"""
|
261 |
+
Same as HEncLayer but for decoder. See `HEncLayer` for documentation.
|
262 |
+
"""
|
263 |
+
super().__init__()
|
264 |
+
norm_fn = lambda d: nn.Identity() # noqa
|
265 |
+
if norm:
|
266 |
+
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
267 |
+
if pad:
|
268 |
+
pad = kernel_size // 4
|
269 |
+
else:
|
270 |
+
pad = 0
|
271 |
+
self.pad = pad
|
272 |
+
self.last = last
|
273 |
+
self.freq = freq
|
274 |
+
self.chin = chin
|
275 |
+
self.empty = empty
|
276 |
+
self.stride = stride
|
277 |
+
self.kernel_size = kernel_size
|
278 |
+
self.norm = norm
|
279 |
+
self.context_freq = context_freq
|
280 |
+
klass = nn.Conv1d
|
281 |
+
klass_tr = nn.ConvTranspose1d
|
282 |
+
if freq:
|
283 |
+
kernel_size = [kernel_size, 1]
|
284 |
+
stride = [stride, 1]
|
285 |
+
klass = nn.Conv2d
|
286 |
+
klass_tr = nn.ConvTranspose2d
|
287 |
+
self.conv_tr = klass_tr(chin, chout, kernel_size, stride)
|
288 |
+
self.norm2 = norm_fn(chout)
|
289 |
+
if self.empty:
|
290 |
+
return
|
291 |
+
self.rewrite = None
|
292 |
+
if rewrite:
|
293 |
+
if context_freq:
|
294 |
+
self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context)
|
295 |
+
else:
|
296 |
+
self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1,
|
297 |
+
[0, context])
|
298 |
+
self.norm1 = norm_fn(2 * chin)
|
299 |
+
|
300 |
+
self.dconv = None
|
301 |
+
if dconv:
|
302 |
+
self.dconv = DConv(chin, **dconv_kw)
|
303 |
+
|
304 |
+
def forward(self, x, skip, length):
|
305 |
+
if self.freq and x.dim() == 3:
|
306 |
+
B, C, T = x.shape
|
307 |
+
x = x.view(B, self.chin, -1, T)
|
308 |
+
|
309 |
+
if not self.empty:
|
310 |
+
x = x + skip
|
311 |
+
|
312 |
+
if self.rewrite:
|
313 |
+
y = F.glu(self.norm1(self.rewrite(x)), dim=1)
|
314 |
+
else:
|
315 |
+
y = x
|
316 |
+
if self.dconv:
|
317 |
+
if self.freq:
|
318 |
+
B, C, Fr, T = y.shape
|
319 |
+
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
|
320 |
+
y = self.dconv(y)
|
321 |
+
if self.freq:
|
322 |
+
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
|
323 |
+
else:
|
324 |
+
y = x
|
325 |
+
assert skip is None
|
326 |
+
z = self.norm2(self.conv_tr(y))
|
327 |
+
if self.freq:
|
328 |
+
if self.pad:
|
329 |
+
z = z[..., self.pad:-self.pad, :]
|
330 |
+
else:
|
331 |
+
z = z[..., self.pad:self.pad + length]
|
332 |
+
assert z.shape[-1] == length, (z.shape[-1], length)
|
333 |
+
if not self.last:
|
334 |
+
z = F.gelu(z)
|
335 |
+
return z, y
|
336 |
+
|
337 |
+
|
338 |
+
class HDemucs(nn.Module):
|
339 |
+
"""
|
340 |
+
Spectrogram and hybrid Demucs model.
|
341 |
+
The spectrogram model has the same structure as Demucs, except the first few layers are over the
|
342 |
+
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
|
343 |
+
Frequency layers can still access information across time steps thanks to the DConv residual.
|
344 |
+
|
345 |
+
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
|
346 |
+
as the frequency branch and then the two are combined. The opposite happens in the decoder.
|
347 |
+
|
348 |
+
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
|
349 |
+
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
|
350 |
+
Open Unmix implementation [Stoter et al. 2019].
|
351 |
+
|
352 |
+
The loss is always on the temporal domain, by backpropagating through the above
|
353 |
+
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
|
354 |
+
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
|
355 |
+
contribution, without changing the one from the waveform, which will lead to worse performance.
|
356 |
+
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
|
357 |
+
CaC on the other hand provides similar performance for hybrid, and works naturally with
|
358 |
+
hybrid models.
|
359 |
+
|
360 |
+
This model also uses frequency embeddings are used to improve efficiency on convolutions
|
361 |
+
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
|
362 |
+
|
363 |
+
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
|
364 |
+
"""
|
365 |
+
@capture_init
|
366 |
+
def __init__(self,
|
367 |
+
sources,
|
368 |
+
# Channels
|
369 |
+
audio_channels=2,
|
370 |
+
channels=48,
|
371 |
+
channels_time=None,
|
372 |
+
growth=2,
|
373 |
+
# STFT
|
374 |
+
nfft=4096,
|
375 |
+
wiener_iters=0,
|
376 |
+
end_iters=0,
|
377 |
+
wiener_residual=False,
|
378 |
+
cac=True,
|
379 |
+
# Main structure
|
380 |
+
depth=6,
|
381 |
+
rewrite=True,
|
382 |
+
hybrid=True,
|
383 |
+
hybrid_old=False,
|
384 |
+
# Frequency branch
|
385 |
+
multi_freqs=None,
|
386 |
+
multi_freqs_depth=2,
|
387 |
+
freq_emb=0.2,
|
388 |
+
emb_scale=10,
|
389 |
+
emb_smooth=True,
|
390 |
+
# Convolutions
|
391 |
+
kernel_size=8,
|
392 |
+
time_stride=2,
|
393 |
+
stride=4,
|
394 |
+
context=1,
|
395 |
+
context_enc=0,
|
396 |
+
# Normalization
|
397 |
+
norm_starts=4,
|
398 |
+
norm_groups=4,
|
399 |
+
# DConv residual branch
|
400 |
+
dconv_mode=1,
|
401 |
+
dconv_depth=2,
|
402 |
+
dconv_comp=4,
|
403 |
+
dconv_attn=4,
|
404 |
+
dconv_lstm=4,
|
405 |
+
dconv_init=1e-4,
|
406 |
+
# Weight init
|
407 |
+
rescale=0.1,
|
408 |
+
# Metadata
|
409 |
+
samplerate=44100,
|
410 |
+
segment=4 * 10):
|
411 |
+
"""
|
412 |
+
Args:
|
413 |
+
sources (list[str]): list of source names.
|
414 |
+
audio_channels (int): input/output audio channels.
|
415 |
+
channels (int): initial number of hidden channels.
|
416 |
+
channels_time: if not None, use a different `channels` value for the time branch.
|
417 |
+
growth: increase the number of hidden channels by this factor at each layer.
|
418 |
+
nfft: number of fft bins. Note that changing this require careful computation of
|
419 |
+
various shape parameters and will not work out of the box for hybrid models.
|
420 |
+
wiener_iters: when using Wiener filtering, number of iterations at test time.
|
421 |
+
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
|
422 |
+
wiener_residual: add residual source before wiener filtering.
|
423 |
+
cac: uses complex as channels, i.e. complex numbers are 2 channels each
|
424 |
+
in input and output. no further processing is done before ISTFT.
|
425 |
+
depth (int): number of layers in the encoder and in the decoder.
|
426 |
+
rewrite (bool): add 1x1 convolution to each layer.
|
427 |
+
hybrid (bool): make a hybrid time/frequency domain, otherwise frequency only.
|
428 |
+
hybrid_old: some models trained for MDX had a padding bug. This replicates
|
429 |
+
this bug to avoid retraining them.
|
430 |
+
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
|
431 |
+
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
|
432 |
+
layers will be wrapped.
|
433 |
+
freq_emb: add frequency embedding after the first frequency layer if > 0,
|
434 |
+
the actual value controls the weight of the embedding.
|
435 |
+
emb_scale: equivalent to scaling the embedding learning rate
|
436 |
+
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
|
437 |
+
kernel_size: kernel_size for encoder and decoder layers.
|
438 |
+
stride: stride for encoder and decoder layers.
|
439 |
+
time_stride: stride for the final time layer, after the merge.
|
440 |
+
context: context for 1x1 conv in the decoder.
|
441 |
+
context_enc: context for 1x1 conv in the encoder.
|
442 |
+
norm_starts: layer at which group norm starts being used.
|
443 |
+
decoder layers are numbered in reverse order.
|
444 |
+
norm_groups: number of groups for group norm.
|
445 |
+
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
446 |
+
dconv_depth: depth of residual DConv branch.
|
447 |
+
dconv_comp: compression of DConv branch.
|
448 |
+
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
449 |
+
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
450 |
+
dconv_init: initial scale for the DConv branch LayerScale.
|
451 |
+
rescale: weight recaling trick
|
452 |
+
|
453 |
+
"""
|
454 |
+
super().__init__()
|
455 |
+
self.cac = cac
|
456 |
+
self.wiener_residual = wiener_residual
|
457 |
+
self.audio_channels = audio_channels
|
458 |
+
self.sources = sources
|
459 |
+
self.kernel_size = kernel_size
|
460 |
+
self.context = context
|
461 |
+
self.stride = stride
|
462 |
+
self.depth = depth
|
463 |
+
self.channels = channels
|
464 |
+
self.samplerate = samplerate
|
465 |
+
self.segment = segment
|
466 |
+
|
467 |
+
self.nfft = nfft
|
468 |
+
self.hop_length = nfft // 4
|
469 |
+
self.wiener_iters = wiener_iters
|
470 |
+
self.end_iters = end_iters
|
471 |
+
self.freq_emb = None
|
472 |
+
self.hybrid = hybrid
|
473 |
+
self.hybrid_old = hybrid_old
|
474 |
+
if hybrid_old:
|
475 |
+
assert hybrid, "hybrid_old must come with hybrid=True"
|
476 |
+
if hybrid:
|
477 |
+
assert wiener_iters == end_iters
|
478 |
+
|
479 |
+
self.encoder = nn.ModuleList()
|
480 |
+
self.decoder = nn.ModuleList()
|
481 |
+
|
482 |
+
if hybrid:
|
483 |
+
self.tencoder = nn.ModuleList()
|
484 |
+
self.tdecoder = nn.ModuleList()
|
485 |
+
|
486 |
+
chin = audio_channels
|
487 |
+
chin_z = chin # number of channels for the freq branch
|
488 |
+
if self.cac:
|
489 |
+
chin_z *= 2
|
490 |
+
chout = channels_time or channels
|
491 |
+
chout_z = channels
|
492 |
+
freqs = nfft // 2
|
493 |
+
|
494 |
+
for index in range(depth):
|
495 |
+
lstm = index >= dconv_lstm
|
496 |
+
attn = index >= dconv_attn
|
497 |
+
norm = index >= norm_starts
|
498 |
+
freq = freqs > 1
|
499 |
+
stri = stride
|
500 |
+
ker = kernel_size
|
501 |
+
if not freq:
|
502 |
+
assert freqs == 1
|
503 |
+
ker = time_stride * 2
|
504 |
+
stri = time_stride
|
505 |
+
|
506 |
+
pad = True
|
507 |
+
last_freq = False
|
508 |
+
if freq and freqs <= kernel_size:
|
509 |
+
ker = freqs
|
510 |
+
pad = False
|
511 |
+
last_freq = True
|
512 |
+
|
513 |
+
kw = {
|
514 |
+
'kernel_size': ker,
|
515 |
+
'stride': stri,
|
516 |
+
'freq': freq,
|
517 |
+
'pad': pad,
|
518 |
+
'norm': norm,
|
519 |
+
'rewrite': rewrite,
|
520 |
+
'norm_groups': norm_groups,
|
521 |
+
'dconv_kw': {
|
522 |
+
'lstm': lstm,
|
523 |
+
'attn': attn,
|
524 |
+
'depth': dconv_depth,
|
525 |
+
'compress': dconv_comp,
|
526 |
+
'init': dconv_init,
|
527 |
+
'gelu': True,
|
528 |
+
}
|
529 |
+
}
|
530 |
+
kwt = dict(kw)
|
531 |
+
kwt['freq'] = 0
|
532 |
+
kwt['kernel_size'] = kernel_size
|
533 |
+
kwt['stride'] = stride
|
534 |
+
kwt['pad'] = True
|
535 |
+
kw_dec = dict(kw)
|
536 |
+
multi = False
|
537 |
+
if multi_freqs and index < multi_freqs_depth:
|
538 |
+
multi = True
|
539 |
+
kw_dec['context_freq'] = False
|
540 |
+
|
541 |
+
if last_freq:
|
542 |
+
chout_z = max(chout, chout_z)
|
543 |
+
chout = chout_z
|
544 |
+
|
545 |
+
enc = HEncLayer(chin_z, chout_z,
|
546 |
+
dconv=dconv_mode & 1, context=context_enc, **kw)
|
547 |
+
if hybrid and freq:
|
548 |
+
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc,
|
549 |
+
empty=last_freq, **kwt)
|
550 |
+
self.tencoder.append(tenc)
|
551 |
+
|
552 |
+
if multi:
|
553 |
+
enc = MultiWrap(enc, multi_freqs)
|
554 |
+
self.encoder.append(enc)
|
555 |
+
if index == 0:
|
556 |
+
chin = self.audio_channels * len(self.sources)
|
557 |
+
chin_z = chin
|
558 |
+
if self.cac:
|
559 |
+
chin_z *= 2
|
560 |
+
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2,
|
561 |
+
last=index == 0, context=context, **kw_dec)
|
562 |
+
if multi:
|
563 |
+
dec = MultiWrap(dec, multi_freqs)
|
564 |
+
if hybrid and freq:
|
565 |
+
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq,
|
566 |
+
last=index == 0, context=context, **kwt)
|
567 |
+
self.tdecoder.insert(0, tdec)
|
568 |
+
self.decoder.insert(0, dec)
|
569 |
+
|
570 |
+
chin = chout
|
571 |
+
chin_z = chout_z
|
572 |
+
chout = int(growth * chout)
|
573 |
+
chout_z = int(growth * chout_z)
|
574 |
+
if freq:
|
575 |
+
if freqs <= kernel_size:
|
576 |
+
freqs = 1
|
577 |
+
else:
|
578 |
+
freqs //= stride
|
579 |
+
if index == 0 and freq_emb:
|
580 |
+
self.freq_emb = ScaledEmbedding(
|
581 |
+
freqs, chin_z, smooth=emb_smooth, scale=emb_scale)
|
582 |
+
self.freq_emb_scale = freq_emb
|
583 |
+
|
584 |
+
if rescale:
|
585 |
+
rescale_module(self, reference=rescale)
|
586 |
+
|
587 |
+
def _spec(self, x):
|
588 |
+
hl = self.hop_length
|
589 |
+
nfft = self.nfft
|
590 |
+
x0 = x # noqa
|
591 |
+
|
592 |
+
if self.hybrid:
|
593 |
+
# We re-pad the signal in order to keep the property
|
594 |
+
# that the size of the output is exactly the size of the input
|
595 |
+
# divided by the stride (here hop_length), when divisible.
|
596 |
+
# This is achieved by padding by 1/4th of the kernel size (here nfft).
|
597 |
+
# which is not supported by torch.stft.
|
598 |
+
# Having all convolution operations follow this convention allow to easily
|
599 |
+
# align the time and frequency branches later on.
|
600 |
+
assert hl == nfft // 4
|
601 |
+
le = int(math.ceil(x.shape[-1] / hl))
|
602 |
+
pad = hl // 2 * 3
|
603 |
+
if not self.hybrid_old:
|
604 |
+
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode='reflect')
|
605 |
+
else:
|
606 |
+
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]))
|
607 |
+
|
608 |
+
z = spectro(x, nfft, hl)[..., :-1, :]
|
609 |
+
if self.hybrid:
|
610 |
+
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
|
611 |
+
z = z[..., 2:2+le]
|
612 |
+
return z
|
613 |
+
|
614 |
+
def _ispec(self, z, length=None, scale=0):
|
615 |
+
hl = self.hop_length // (4 ** scale)
|
616 |
+
z = F.pad(z, (0, 0, 0, 1))
|
617 |
+
if self.hybrid:
|
618 |
+
z = F.pad(z, (2, 2))
|
619 |
+
pad = hl // 2 * 3
|
620 |
+
if not self.hybrid_old:
|
621 |
+
le = hl * int(math.ceil(length / hl)) + 2 * pad
|
622 |
+
else:
|
623 |
+
le = hl * int(math.ceil(length / hl))
|
624 |
+
x = ispectro(z, hl, length=le)
|
625 |
+
if not self.hybrid_old:
|
626 |
+
x = x[..., pad:pad + length]
|
627 |
+
else:
|
628 |
+
x = x[..., :length]
|
629 |
+
else:
|
630 |
+
x = ispectro(z, hl, length)
|
631 |
+
return x
|
632 |
+
|
633 |
+
def _magnitude(self, z):
|
634 |
+
# return the magnitude of the spectrogram, except when cac is True,
|
635 |
+
# in which case we just move the complex dimension to the channel one.
|
636 |
+
if self.cac:
|
637 |
+
B, C, Fr, T = z.shape
|
638 |
+
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
|
639 |
+
m = m.reshape(B, C * 2, Fr, T)
|
640 |
+
else:
|
641 |
+
m = z.abs()
|
642 |
+
return m
|
643 |
+
|
644 |
+
def _mask(self, z, m):
|
645 |
+
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
|
646 |
+
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
|
647 |
+
niters = self.wiener_iters
|
648 |
+
if self.cac:
|
649 |
+
B, S, C, Fr, T = m.shape
|
650 |
+
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
|
651 |
+
out = torch.view_as_complex(out.contiguous())
|
652 |
+
return out
|
653 |
+
if self.training:
|
654 |
+
niters = self.end_iters
|
655 |
+
if niters < 0:
|
656 |
+
z = z[:, None]
|
657 |
+
return z / (1e-8 + z.abs()) * m
|
658 |
+
else:
|
659 |
+
return self._wiener(m, z, niters)
|
660 |
+
|
661 |
+
def _wiener(self, mag_out, mix_stft, niters):
|
662 |
+
# apply wiener filtering from OpenUnmix.
|
663 |
+
init = mix_stft.dtype
|
664 |
+
wiener_win_len = 300
|
665 |
+
residual = self.wiener_residual
|
666 |
+
|
667 |
+
B, S, C, Fq, T = mag_out.shape
|
668 |
+
mag_out = mag_out.permute(0, 4, 3, 2, 1)
|
669 |
+
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
|
670 |
+
|
671 |
+
outs = []
|
672 |
+
for sample in range(B):
|
673 |
+
pos = 0
|
674 |
+
out = []
|
675 |
+
for pos in range(0, T, wiener_win_len):
|
676 |
+
frame = slice(pos, pos + wiener_win_len)
|
677 |
+
z_out = wiener(
|
678 |
+
mag_out[sample, frame], mix_stft[sample, frame], niters,
|
679 |
+
residual=residual)
|
680 |
+
out.append(z_out.transpose(-1, -2))
|
681 |
+
outs.append(torch.cat(out, dim=0))
|
682 |
+
out = torch.view_as_complex(torch.stack(outs, 0))
|
683 |
+
out = out.permute(0, 4, 3, 2, 1).contiguous()
|
684 |
+
if residual:
|
685 |
+
out = out[:, :-1]
|
686 |
+
assert list(out.shape) == [B, S, C, Fq, T]
|
687 |
+
return out.to(init)
|
688 |
+
|
689 |
+
def forward(self, mix):
|
690 |
+
x = mix
|
691 |
+
length = x.shape[-1]
|
692 |
+
|
693 |
+
z = self._spec(mix)
|
694 |
+
mag = self._magnitude(z)
|
695 |
+
x = mag
|
696 |
+
|
697 |
+
B, C, Fq, T = x.shape
|
698 |
+
|
699 |
+
# unlike previous Demucs, we always normalize because it is easier.
|
700 |
+
mean = x.mean(dim=(1, 2, 3), keepdim=True)
|
701 |
+
std = x.std(dim=(1, 2, 3), keepdim=True)
|
702 |
+
x = (x - mean) / (1e-5 + std)
|
703 |
+
# x will be the freq. branch input.
|
704 |
+
|
705 |
+
if self.hybrid:
|
706 |
+
# Prepare the time branch input.
|
707 |
+
xt = mix
|
708 |
+
meant = xt.mean(dim=(1, 2), keepdim=True)
|
709 |
+
stdt = xt.std(dim=(1, 2), keepdim=True)
|
710 |
+
xt = (xt - meant) / (1e-5 + stdt)
|
711 |
+
|
712 |
+
# okay, this is a giant mess I know...
|
713 |
+
saved = [] # skip connections, freq.
|
714 |
+
saved_t = [] # skip connections, time.
|
715 |
+
lengths = [] # saved lengths to properly remove padding, freq branch.
|
716 |
+
lengths_t = [] # saved lengths for time branch.
|
717 |
+
for idx, encode in enumerate(self.encoder):
|
718 |
+
lengths.append(x.shape[-1])
|
719 |
+
inject = None
|
720 |
+
if self.hybrid and idx < len(self.tencoder):
|
721 |
+
# we have not yet merged branches.
|
722 |
+
lengths_t.append(xt.shape[-1])
|
723 |
+
tenc = self.tencoder[idx]
|
724 |
+
xt = tenc(xt)
|
725 |
+
if not tenc.empty:
|
726 |
+
# save for skip connection
|
727 |
+
saved_t.append(xt)
|
728 |
+
else:
|
729 |
+
# tenc contains just the first conv., so that now time and freq.
|
730 |
+
# branches have the same shape and can be merged.
|
731 |
+
inject = xt
|
732 |
+
x = encode(x, inject)
|
733 |
+
if idx == 0 and self.freq_emb is not None:
|
734 |
+
# add frequency embedding to allow for non equivariant convolutions
|
735 |
+
# over the frequency axis.
|
736 |
+
frs = torch.arange(x.shape[-2], device=x.device)
|
737 |
+
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
|
738 |
+
x = x + self.freq_emb_scale * emb
|
739 |
+
|
740 |
+
saved.append(x)
|
741 |
+
|
742 |
+
x = torch.zeros_like(x)
|
743 |
+
if self.hybrid:
|
744 |
+
xt = torch.zeros_like(x)
|
745 |
+
# initialize everything to zero (signal will go through u-net skips).
|
746 |
+
|
747 |
+
for idx, decode in enumerate(self.decoder):
|
748 |
+
skip = saved.pop(-1)
|
749 |
+
x, pre = decode(x, skip, lengths.pop(-1))
|
750 |
+
# `pre` contains the output just before final transposed convolution,
|
751 |
+
# which is used when the freq. and time branch separate.
|
752 |
+
|
753 |
+
if self.hybrid:
|
754 |
+
offset = self.depth - len(self.tdecoder)
|
755 |
+
if self.hybrid and idx >= offset:
|
756 |
+
tdec = self.tdecoder[idx - offset]
|
757 |
+
length_t = lengths_t.pop(-1)
|
758 |
+
if tdec.empty:
|
759 |
+
assert pre.shape[2] == 1, pre.shape
|
760 |
+
pre = pre[:, :, 0]
|
761 |
+
xt, _ = tdec(pre, None, length_t)
|
762 |
+
else:
|
763 |
+
skip = saved_t.pop(-1)
|
764 |
+
xt, _ = tdec(xt, skip, length_t)
|
765 |
+
|
766 |
+
# Let's make sure we used all stored skip connections.
|
767 |
+
assert len(saved) == 0
|
768 |
+
assert len(lengths_t) == 0
|
769 |
+
assert len(saved_t) == 0
|
770 |
+
|
771 |
+
S = len(self.sources)
|
772 |
+
x = x.view(B, S, -1, Fq, T)
|
773 |
+
x = x * std[:, None] + mean[:, None]
|
774 |
+
|
775 |
+
zout = self._mask(z, x)
|
776 |
+
x = self._ispec(zout, length)
|
777 |
+
|
778 |
+
if self.hybrid:
|
779 |
+
xt = xt.view(B, S, -1, length)
|
780 |
+
xt = xt * stdt[:, None] + meant[:, None]
|
781 |
+
x = xt + x
|
782 |
+
return x
|
demucs3/htdemucs.py
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# First author is Simon Rouard.
|
7 |
+
"""
|
8 |
+
This code contains the spectrogram and Hybrid version of Demucs.
|
9 |
+
"""
|
10 |
+
import math
|
11 |
+
|
12 |
+
from openunmix.filtering import wiener
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from fractions import Fraction
|
17 |
+
from einops import rearrange
|
18 |
+
|
19 |
+
from .transformer import CrossTransformerEncoder
|
20 |
+
|
21 |
+
from .demucs import rescale_module
|
22 |
+
from .states import capture_init
|
23 |
+
from .spec import spectro, ispectro
|
24 |
+
from .hdemucs import pad1d, ScaledEmbedding, HEncLayer, MultiWrap, HDecLayer
|
25 |
+
|
26 |
+
|
27 |
+
class HTDemucs(nn.Module):
|
28 |
+
"""
|
29 |
+
Spectrogram and hybrid Demucs model.
|
30 |
+
The spectrogram model has the same structure as Demucs, except the first few layers are over the
|
31 |
+
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
|
32 |
+
Frequency layers can still access information across time steps thanks to the DConv residual.
|
33 |
+
|
34 |
+
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
|
35 |
+
as the frequency branch and then the two are combined. The opposite happens in the decoder.
|
36 |
+
|
37 |
+
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
|
38 |
+
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
|
39 |
+
Open Unmix implementation [Stoter et al. 2019].
|
40 |
+
|
41 |
+
The loss is always on the temporal domain, by backpropagating through the above
|
42 |
+
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
|
43 |
+
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
|
44 |
+
contribution, without changing the one from the waveform, which will lead to worse performance.
|
45 |
+
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
|
46 |
+
CaC on the other hand provides similar performance for hybrid, and works naturally with
|
47 |
+
hybrid models.
|
48 |
+
|
49 |
+
This model also uses frequency embeddings are used to improve efficiency on convolutions
|
50 |
+
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
|
51 |
+
|
52 |
+
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
|
53 |
+
"""
|
54 |
+
|
55 |
+
@capture_init
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
sources,
|
59 |
+
# Channels
|
60 |
+
audio_channels=2,
|
61 |
+
channels=48,
|
62 |
+
channels_time=None,
|
63 |
+
growth=2,
|
64 |
+
# STFT
|
65 |
+
nfft=4096,
|
66 |
+
wiener_iters=0,
|
67 |
+
end_iters=0,
|
68 |
+
wiener_residual=False,
|
69 |
+
cac=True,
|
70 |
+
# Main structure
|
71 |
+
depth=4,
|
72 |
+
rewrite=True,
|
73 |
+
# Frequency branch
|
74 |
+
multi_freqs=None,
|
75 |
+
multi_freqs_depth=3,
|
76 |
+
freq_emb=0.2,
|
77 |
+
emb_scale=10,
|
78 |
+
emb_smooth=True,
|
79 |
+
# Convolutions
|
80 |
+
kernel_size=8,
|
81 |
+
time_stride=2,
|
82 |
+
stride=4,
|
83 |
+
context=1,
|
84 |
+
context_enc=0,
|
85 |
+
# Normalization
|
86 |
+
norm_starts=4,
|
87 |
+
norm_groups=4,
|
88 |
+
# DConv residual branch
|
89 |
+
dconv_mode=1,
|
90 |
+
dconv_depth=2,
|
91 |
+
dconv_comp=8,
|
92 |
+
dconv_init=1e-3,
|
93 |
+
# Before the Transformer
|
94 |
+
bottom_channels=0,
|
95 |
+
# Transformer
|
96 |
+
t_layers=5,
|
97 |
+
t_emb="sin",
|
98 |
+
t_hidden_scale=4.0,
|
99 |
+
t_heads=8,
|
100 |
+
t_dropout=0.0,
|
101 |
+
t_max_positions=10000,
|
102 |
+
t_norm_in=True,
|
103 |
+
t_norm_in_group=False,
|
104 |
+
t_group_norm=False,
|
105 |
+
t_norm_first=True,
|
106 |
+
t_norm_out=True,
|
107 |
+
t_max_period=10000.0,
|
108 |
+
t_weight_decay=0.0,
|
109 |
+
t_lr=None,
|
110 |
+
t_layer_scale=True,
|
111 |
+
t_gelu=True,
|
112 |
+
t_weight_pos_embed=1.0,
|
113 |
+
t_sin_random_shift=0,
|
114 |
+
t_cape_mean_normalize=True,
|
115 |
+
t_cape_augment=True,
|
116 |
+
t_cape_glob_loc_scale=[5000.0, 1.0, 1.4],
|
117 |
+
t_sparse_self_attn=False,
|
118 |
+
t_sparse_cross_attn=False,
|
119 |
+
t_mask_type="diag",
|
120 |
+
t_mask_random_seed=42,
|
121 |
+
t_sparse_attn_window=500,
|
122 |
+
t_global_window=100,
|
123 |
+
t_sparsity=0.95,
|
124 |
+
t_auto_sparsity=False,
|
125 |
+
# ------ Particuliar parameters
|
126 |
+
t_cross_first=False,
|
127 |
+
# Weight init
|
128 |
+
rescale=0.1,
|
129 |
+
# Metadata
|
130 |
+
samplerate=44100,
|
131 |
+
segment=10,
|
132 |
+
use_train_segment=True,
|
133 |
+
):
|
134 |
+
"""
|
135 |
+
Args:
|
136 |
+
sources (list[str]): list of source names.
|
137 |
+
audio_channels (int): input/output audio channels.
|
138 |
+
channels (int): initial number of hidden channels.
|
139 |
+
channels_time: if not None, use a different `channels` value for the time branch.
|
140 |
+
growth: increase the number of hidden channels by this factor at each layer.
|
141 |
+
nfft: number of fft bins. Note that changing this require careful computation of
|
142 |
+
various shape parameters and will not work out of the box for hybrid models.
|
143 |
+
wiener_iters: when using Wiener filtering, number of iterations at test time.
|
144 |
+
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
|
145 |
+
wiener_residual: add residual source before wiener filtering.
|
146 |
+
cac: uses complex as channels, i.e. complex numbers are 2 channels each
|
147 |
+
in input and output. no further processing is done before ISTFT.
|
148 |
+
depth (int): number of layers in the encoder and in the decoder.
|
149 |
+
rewrite (bool): add 1x1 convolution to each layer.
|
150 |
+
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
|
151 |
+
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
|
152 |
+
layers will be wrapped.
|
153 |
+
freq_emb: add frequency embedding after the first frequency layer if > 0,
|
154 |
+
the actual value controls the weight of the embedding.
|
155 |
+
emb_scale: equivalent to scaling the embedding learning rate
|
156 |
+
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
|
157 |
+
kernel_size: kernel_size for encoder and decoder layers.
|
158 |
+
stride: stride for encoder and decoder layers.
|
159 |
+
time_stride: stride for the final time layer, after the merge.
|
160 |
+
context: context for 1x1 conv in the decoder.
|
161 |
+
context_enc: context for 1x1 conv in the encoder.
|
162 |
+
norm_starts: layer at which group norm starts being used.
|
163 |
+
decoder layers are numbered in reverse order.
|
164 |
+
norm_groups: number of groups for group norm.
|
165 |
+
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
166 |
+
dconv_depth: depth of residual DConv branch.
|
167 |
+
dconv_comp: compression of DConv branch.
|
168 |
+
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
169 |
+
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
170 |
+
dconv_init: initial scale for the DConv branch LayerScale.
|
171 |
+
bottom_channels: if >0 it adds a linear layer (1x1 Conv) before and after the
|
172 |
+
transformer in order to change the number of channels
|
173 |
+
t_layers: number of layers in each branch (waveform and spec) of the transformer
|
174 |
+
t_emb: "sin", "cape" or "scaled"
|
175 |
+
t_hidden_scale: the hidden scale of the Feedforward parts of the transformer
|
176 |
+
for instance if C = 384 (the number of channels in the transformer) and
|
177 |
+
t_hidden_scale = 4.0 then the intermediate layer of the FFN has dimension
|
178 |
+
384 * 4 = 1536
|
179 |
+
t_heads: number of heads for the transformer
|
180 |
+
t_dropout: dropout in the transformer
|
181 |
+
t_max_positions: max_positions for the "scaled" positional embedding, only
|
182 |
+
useful if t_emb="scaled"
|
183 |
+
t_norm_in: (bool) norm before addinf positional embedding and getting into the
|
184 |
+
transformer layers
|
185 |
+
t_norm_in_group: (bool) if True while t_norm_in=True, the norm is on all the
|
186 |
+
timesteps (GroupNorm with group=1)
|
187 |
+
t_group_norm: (bool) if True, the norms of the Encoder Layers are on all the
|
188 |
+
timesteps (GroupNorm with group=1)
|
189 |
+
t_norm_first: (bool) if True the norm is before the attention and before the FFN
|
190 |
+
t_norm_out: (bool) if True, there is a GroupNorm (group=1) at the end of each layer
|
191 |
+
t_max_period: (float) denominator in the sinusoidal embedding expression
|
192 |
+
t_weight_decay: (float) weight decay for the transformer
|
193 |
+
t_lr: (float) specific learning rate for the transformer
|
194 |
+
t_layer_scale: (bool) Layer Scale for the transformer
|
195 |
+
t_gelu: (bool) activations of the transformer are GeLU if True, ReLU else
|
196 |
+
t_weight_pos_embed: (float) weighting of the positional embedding
|
197 |
+
t_cape_mean_normalize: (bool) if t_emb="cape", normalisation of positional embeddings
|
198 |
+
see: https://arxiv.org/abs/2106.03143
|
199 |
+
t_cape_augment: (bool) if t_emb="cape", must be True during training and False
|
200 |
+
during the inference, see: https://arxiv.org/abs/2106.03143
|
201 |
+
t_cape_glob_loc_scale: (list of 3 floats) if t_emb="cape", CAPE parameters
|
202 |
+
see: https://arxiv.org/abs/2106.03143
|
203 |
+
t_sparse_self_attn: (bool) if True, the self attentions are sparse
|
204 |
+
t_sparse_cross_attn: (bool) if True, the cross-attentions are sparse (don't use it
|
205 |
+
unless you designed really specific masks)
|
206 |
+
t_mask_type: (str) can be "diag", "jmask", "random", "global" or any combination
|
207 |
+
with '_' between: i.e. "diag_jmask_random" (note that this is permutation
|
208 |
+
invariant i.e. "diag_jmask_random" is equivalent to "jmask_random_diag")
|
209 |
+
t_mask_random_seed: (int) if "random" is in t_mask_type, controls the seed
|
210 |
+
that generated the random part of the mask
|
211 |
+
t_sparse_attn_window: (int) if "diag" is in t_mask_type, for a query (i), and
|
212 |
+
a key (j), the mask is True id |i-j|<=t_sparse_attn_window
|
213 |
+
t_global_window: (int) if "global" is in t_mask_type, mask[:t_global_window, :]
|
214 |
+
and mask[:, :t_global_window] will be True
|
215 |
+
t_sparsity: (float) if "random" is in t_mask_type, t_sparsity is the sparsity
|
216 |
+
level of the random part of the mask.
|
217 |
+
t_cross_first: (bool) if True cross attention is the first layer of the
|
218 |
+
transformer (False seems to be better)
|
219 |
+
rescale: weight rescaling trick
|
220 |
+
use_train_segment: (bool) if True, the actual size that is used during the
|
221 |
+
training is used during inference.
|
222 |
+
"""
|
223 |
+
super().__init__()
|
224 |
+
self.cac = cac
|
225 |
+
self.wiener_residual = wiener_residual
|
226 |
+
self.audio_channels = audio_channels
|
227 |
+
self.sources = sources
|
228 |
+
self.kernel_size = kernel_size
|
229 |
+
self.context = context
|
230 |
+
self.stride = stride
|
231 |
+
self.depth = depth
|
232 |
+
self.bottom_channels = bottom_channels
|
233 |
+
self.channels = channels
|
234 |
+
self.samplerate = samplerate
|
235 |
+
self.segment = segment
|
236 |
+
self.use_train_segment = use_train_segment
|
237 |
+
self.nfft = nfft
|
238 |
+
self.hop_length = nfft // 4
|
239 |
+
self.wiener_iters = wiener_iters
|
240 |
+
self.end_iters = end_iters
|
241 |
+
self.freq_emb = None
|
242 |
+
assert wiener_iters == end_iters
|
243 |
+
|
244 |
+
self.encoder = nn.ModuleList()
|
245 |
+
self.decoder = nn.ModuleList()
|
246 |
+
|
247 |
+
self.tencoder = nn.ModuleList()
|
248 |
+
self.tdecoder = nn.ModuleList()
|
249 |
+
|
250 |
+
chin = audio_channels
|
251 |
+
chin_z = chin # number of channels for the freq branch
|
252 |
+
if self.cac:
|
253 |
+
chin_z *= 2
|
254 |
+
chout = channels_time or channels
|
255 |
+
chout_z = channels
|
256 |
+
freqs = nfft // 2
|
257 |
+
|
258 |
+
for index in range(depth):
|
259 |
+
norm = index >= norm_starts
|
260 |
+
freq = freqs > 1
|
261 |
+
stri = stride
|
262 |
+
ker = kernel_size
|
263 |
+
if not freq:
|
264 |
+
assert freqs == 1
|
265 |
+
ker = time_stride * 2
|
266 |
+
stri = time_stride
|
267 |
+
|
268 |
+
pad = True
|
269 |
+
last_freq = False
|
270 |
+
if freq and freqs <= kernel_size:
|
271 |
+
ker = freqs
|
272 |
+
pad = False
|
273 |
+
last_freq = True
|
274 |
+
|
275 |
+
kw = {
|
276 |
+
"kernel_size": ker,
|
277 |
+
"stride": stri,
|
278 |
+
"freq": freq,
|
279 |
+
"pad": pad,
|
280 |
+
"norm": norm,
|
281 |
+
"rewrite": rewrite,
|
282 |
+
"norm_groups": norm_groups,
|
283 |
+
"dconv_kw": {
|
284 |
+
"depth": dconv_depth,
|
285 |
+
"compress": dconv_comp,
|
286 |
+
"init": dconv_init,
|
287 |
+
"gelu": True,
|
288 |
+
},
|
289 |
+
}
|
290 |
+
kwt = dict(kw)
|
291 |
+
kwt["freq"] = 0
|
292 |
+
kwt["kernel_size"] = kernel_size
|
293 |
+
kwt["stride"] = stride
|
294 |
+
kwt["pad"] = True
|
295 |
+
kw_dec = dict(kw)
|
296 |
+
multi = False
|
297 |
+
if multi_freqs and index < multi_freqs_depth:
|
298 |
+
multi = True
|
299 |
+
kw_dec["context_freq"] = False
|
300 |
+
|
301 |
+
if last_freq:
|
302 |
+
chout_z = max(chout, chout_z)
|
303 |
+
chout = chout_z
|
304 |
+
|
305 |
+
enc = HEncLayer(
|
306 |
+
chin_z, chout_z, dconv=dconv_mode & 1, context=context_enc, **kw
|
307 |
+
)
|
308 |
+
if freq:
|
309 |
+
tenc = HEncLayer(
|
310 |
+
chin,
|
311 |
+
chout,
|
312 |
+
dconv=dconv_mode & 1,
|
313 |
+
context=context_enc,
|
314 |
+
empty=last_freq,
|
315 |
+
**kwt
|
316 |
+
)
|
317 |
+
self.tencoder.append(tenc)
|
318 |
+
|
319 |
+
if multi:
|
320 |
+
enc = MultiWrap(enc, multi_freqs)
|
321 |
+
self.encoder.append(enc)
|
322 |
+
if index == 0:
|
323 |
+
chin = self.audio_channels * len(self.sources)
|
324 |
+
chin_z = chin
|
325 |
+
if self.cac:
|
326 |
+
chin_z *= 2
|
327 |
+
dec = HDecLayer(
|
328 |
+
chout_z,
|
329 |
+
chin_z,
|
330 |
+
dconv=dconv_mode & 2,
|
331 |
+
last=index == 0,
|
332 |
+
context=context,
|
333 |
+
**kw_dec
|
334 |
+
)
|
335 |
+
if multi:
|
336 |
+
dec = MultiWrap(dec, multi_freqs)
|
337 |
+
if freq:
|
338 |
+
tdec = HDecLayer(
|
339 |
+
chout,
|
340 |
+
chin,
|
341 |
+
dconv=dconv_mode & 2,
|
342 |
+
empty=last_freq,
|
343 |
+
last=index == 0,
|
344 |
+
context=context,
|
345 |
+
**kwt
|
346 |
+
)
|
347 |
+
self.tdecoder.insert(0, tdec)
|
348 |
+
self.decoder.insert(0, dec)
|
349 |
+
|
350 |
+
chin = chout
|
351 |
+
chin_z = chout_z
|
352 |
+
chout = int(growth * chout)
|
353 |
+
chout_z = int(growth * chout_z)
|
354 |
+
if freq:
|
355 |
+
if freqs <= kernel_size:
|
356 |
+
freqs = 1
|
357 |
+
else:
|
358 |
+
freqs //= stride
|
359 |
+
if index == 0 and freq_emb:
|
360 |
+
self.freq_emb = ScaledEmbedding(
|
361 |
+
freqs, chin_z, smooth=emb_smooth, scale=emb_scale
|
362 |
+
)
|
363 |
+
self.freq_emb_scale = freq_emb
|
364 |
+
|
365 |
+
if rescale:
|
366 |
+
rescale_module(self, reference=rescale)
|
367 |
+
|
368 |
+
transformer_channels = channels * growth ** (depth - 1)
|
369 |
+
if bottom_channels:
|
370 |
+
self.channel_upsampler = nn.Conv1d(transformer_channels, bottom_channels, 1)
|
371 |
+
self.channel_downsampler = nn.Conv1d(
|
372 |
+
bottom_channels, transformer_channels, 1
|
373 |
+
)
|
374 |
+
self.channel_upsampler_t = nn.Conv1d(
|
375 |
+
transformer_channels, bottom_channels, 1
|
376 |
+
)
|
377 |
+
self.channel_downsampler_t = nn.Conv1d(
|
378 |
+
bottom_channels, transformer_channels, 1
|
379 |
+
)
|
380 |
+
|
381 |
+
transformer_channels = bottom_channels
|
382 |
+
|
383 |
+
if t_layers > 0:
|
384 |
+
self.crosstransformer = CrossTransformerEncoder(
|
385 |
+
dim=transformer_channels,
|
386 |
+
emb=t_emb,
|
387 |
+
hidden_scale=t_hidden_scale,
|
388 |
+
num_heads=t_heads,
|
389 |
+
num_layers=t_layers,
|
390 |
+
cross_first=t_cross_first,
|
391 |
+
dropout=t_dropout,
|
392 |
+
max_positions=t_max_positions,
|
393 |
+
norm_in=t_norm_in,
|
394 |
+
norm_in_group=t_norm_in_group,
|
395 |
+
group_norm=t_group_norm,
|
396 |
+
norm_first=t_norm_first,
|
397 |
+
norm_out=t_norm_out,
|
398 |
+
max_period=t_max_period,
|
399 |
+
weight_decay=t_weight_decay,
|
400 |
+
lr=t_lr,
|
401 |
+
layer_scale=t_layer_scale,
|
402 |
+
gelu=t_gelu,
|
403 |
+
sin_random_shift=t_sin_random_shift,
|
404 |
+
weight_pos_embed=t_weight_pos_embed,
|
405 |
+
cape_mean_normalize=t_cape_mean_normalize,
|
406 |
+
cape_augment=t_cape_augment,
|
407 |
+
cape_glob_loc_scale=t_cape_glob_loc_scale,
|
408 |
+
sparse_self_attn=t_sparse_self_attn,
|
409 |
+
sparse_cross_attn=t_sparse_cross_attn,
|
410 |
+
mask_type=t_mask_type,
|
411 |
+
mask_random_seed=t_mask_random_seed,
|
412 |
+
sparse_attn_window=t_sparse_attn_window,
|
413 |
+
global_window=t_global_window,
|
414 |
+
sparsity=t_sparsity,
|
415 |
+
auto_sparsity=t_auto_sparsity,
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
self.crosstransformer = None
|
419 |
+
|
420 |
+
def _spec(self, x):
|
421 |
+
hl = self.hop_length
|
422 |
+
nfft = self.nfft
|
423 |
+
x0 = x # noqa
|
424 |
+
|
425 |
+
# We re-pad the signal in order to keep the property
|
426 |
+
# that the size of the output is exactly the size of the input
|
427 |
+
# divided by the stride (here hop_length), when divisible.
|
428 |
+
# This is achieved by padding by 1/4th of the kernel size (here nfft).
|
429 |
+
# which is not supported by torch.stft.
|
430 |
+
# Having all convolution operations follow this convention allow to easily
|
431 |
+
# align the time and frequency branches later on.
|
432 |
+
assert hl == nfft // 4
|
433 |
+
le = int(math.ceil(x.shape[-1] / hl))
|
434 |
+
pad = hl // 2 * 3
|
435 |
+
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode="reflect")
|
436 |
+
|
437 |
+
z = spectro(x, nfft, hl)[..., :-1, :]
|
438 |
+
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
|
439 |
+
z = z[..., 2: 2 + le]
|
440 |
+
return z
|
441 |
+
|
442 |
+
def _ispec(self, z, length=None, scale=0):
|
443 |
+
hl = self.hop_length // (4**scale)
|
444 |
+
z = F.pad(z, (0, 0, 0, 1))
|
445 |
+
z = F.pad(z, (2, 2))
|
446 |
+
pad = hl // 2 * 3
|
447 |
+
le = hl * int(math.ceil(length / hl)) + 2 * pad
|
448 |
+
x = ispectro(z, hl, length=le)
|
449 |
+
x = x[..., pad: pad + length]
|
450 |
+
return x
|
451 |
+
|
452 |
+
def _magnitude(self, z):
|
453 |
+
# return the magnitude of the spectrogram, except when cac is True,
|
454 |
+
# in which case we just move the complex dimension to the channel one.
|
455 |
+
if self.cac:
|
456 |
+
B, C, Fr, T = z.shape
|
457 |
+
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
|
458 |
+
m = m.reshape(B, C * 2, Fr, T)
|
459 |
+
else:
|
460 |
+
m = z.abs()
|
461 |
+
return m
|
462 |
+
|
463 |
+
def _mask(self, z, m):
|
464 |
+
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
|
465 |
+
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
|
466 |
+
niters = self.wiener_iters
|
467 |
+
if self.cac:
|
468 |
+
B, S, C, Fr, T = m.shape
|
469 |
+
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
|
470 |
+
out = torch.view_as_complex(out.contiguous())
|
471 |
+
return out
|
472 |
+
if self.training:
|
473 |
+
niters = self.end_iters
|
474 |
+
if niters < 0:
|
475 |
+
z = z[:, None]
|
476 |
+
return z / (1e-8 + z.abs()) * m
|
477 |
+
else:
|
478 |
+
return self._wiener(m, z, niters)
|
479 |
+
|
480 |
+
def _wiener(self, mag_out, mix_stft, niters):
|
481 |
+
# apply wiener filtering from OpenUnmix.
|
482 |
+
init = mix_stft.dtype
|
483 |
+
wiener_win_len = 300
|
484 |
+
residual = self.wiener_residual
|
485 |
+
|
486 |
+
B, S, C, Fq, T = mag_out.shape
|
487 |
+
mag_out = mag_out.permute(0, 4, 3, 2, 1)
|
488 |
+
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
|
489 |
+
|
490 |
+
outs = []
|
491 |
+
for sample in range(B):
|
492 |
+
pos = 0
|
493 |
+
out = []
|
494 |
+
for pos in range(0, T, wiener_win_len):
|
495 |
+
frame = slice(pos, pos + wiener_win_len)
|
496 |
+
z_out = wiener(
|
497 |
+
mag_out[sample, frame],
|
498 |
+
mix_stft[sample, frame],
|
499 |
+
niters,
|
500 |
+
residual=residual,
|
501 |
+
)
|
502 |
+
out.append(z_out.transpose(-1, -2))
|
503 |
+
outs.append(torch.cat(out, dim=0))
|
504 |
+
out = torch.view_as_complex(torch.stack(outs, 0))
|
505 |
+
out = out.permute(0, 4, 3, 2, 1).contiguous()
|
506 |
+
if residual:
|
507 |
+
out = out[:, :-1]
|
508 |
+
assert list(out.shape) == [B, S, C, Fq, T]
|
509 |
+
return out.to(init)
|
510 |
+
|
511 |
+
def valid_length(self, length: int):
|
512 |
+
"""
|
513 |
+
Return a length that is appropriate for evaluation.
|
514 |
+
In our case, always return the training length, unless
|
515 |
+
it is smaller than the given length, in which case this
|
516 |
+
raises an error.
|
517 |
+
"""
|
518 |
+
if not self.use_train_segment:
|
519 |
+
return length
|
520 |
+
training_length = int(self.segment * self.samplerate)
|
521 |
+
if training_length < length:
|
522 |
+
raise ValueError(
|
523 |
+
f"Given length {length} is longer than "
|
524 |
+
f"training length {training_length}")
|
525 |
+
return training_length
|
526 |
+
|
527 |
+
def forward(self, mix):
|
528 |
+
length = mix.shape[-1]
|
529 |
+
length_pre_pad = None
|
530 |
+
if self.use_train_segment:
|
531 |
+
if self.training:
|
532 |
+
self.segment = Fraction(mix.shape[-1], self.samplerate)
|
533 |
+
else:
|
534 |
+
training_length = int(self.segment * self.samplerate)
|
535 |
+
if mix.shape[-1] < training_length:
|
536 |
+
length_pre_pad = mix.shape[-1]
|
537 |
+
mix = F.pad(mix, (0, training_length - length_pre_pad))
|
538 |
+
z = self._spec(mix)
|
539 |
+
mag = self._magnitude(z)
|
540 |
+
x = mag
|
541 |
+
|
542 |
+
B, C, Fq, T = x.shape
|
543 |
+
|
544 |
+
# unlike previous Demucs, we always normalize because it is easier.
|
545 |
+
mean = x.mean(dim=(1, 2, 3), keepdim=True)
|
546 |
+
std = x.std(dim=(1, 2, 3), keepdim=True)
|
547 |
+
x = (x - mean) / (1e-5 + std)
|
548 |
+
# x will be the freq. branch input.
|
549 |
+
|
550 |
+
# Prepare the time branch input.
|
551 |
+
xt = mix
|
552 |
+
meant = xt.mean(dim=(1, 2), keepdim=True)
|
553 |
+
stdt = xt.std(dim=(1, 2), keepdim=True)
|
554 |
+
xt = (xt - meant) / (1e-5 + stdt)
|
555 |
+
|
556 |
+
# okay, this is a giant mess I know...
|
557 |
+
saved = [] # skip connections, freq.
|
558 |
+
saved_t = [] # skip connections, time.
|
559 |
+
lengths = [] # saved lengths to properly remove padding, freq branch.
|
560 |
+
lengths_t = [] # saved lengths for time branch.
|
561 |
+
for idx, encode in enumerate(self.encoder):
|
562 |
+
lengths.append(x.shape[-1])
|
563 |
+
inject = None
|
564 |
+
if idx < len(self.tencoder):
|
565 |
+
# we have not yet merged branches.
|
566 |
+
lengths_t.append(xt.shape[-1])
|
567 |
+
tenc = self.tencoder[idx]
|
568 |
+
xt = tenc(xt)
|
569 |
+
if not tenc.empty:
|
570 |
+
# save for skip connection
|
571 |
+
saved_t.append(xt)
|
572 |
+
else:
|
573 |
+
# tenc contains just the first conv., so that now time and freq.
|
574 |
+
# branches have the same shape and can be merged.
|
575 |
+
inject = xt
|
576 |
+
x = encode(x, inject)
|
577 |
+
if idx == 0 and self.freq_emb is not None:
|
578 |
+
# add frequency embedding to allow for non equivariant convolutions
|
579 |
+
# over the frequency axis.
|
580 |
+
frs = torch.arange(x.shape[-2], device=x.device)
|
581 |
+
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
|
582 |
+
x = x + self.freq_emb_scale * emb
|
583 |
+
|
584 |
+
saved.append(x)
|
585 |
+
if self.crosstransformer:
|
586 |
+
if self.bottom_channels:
|
587 |
+
b, c, f, t = x.shape
|
588 |
+
x = rearrange(x, "b c f t-> b c (f t)")
|
589 |
+
x = self.channel_upsampler(x)
|
590 |
+
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
591 |
+
xt = self.channel_upsampler_t(xt)
|
592 |
+
|
593 |
+
x, xt = self.crosstransformer(x, xt)
|
594 |
+
|
595 |
+
if self.bottom_channels:
|
596 |
+
x = rearrange(x, "b c f t-> b c (f t)")
|
597 |
+
x = self.channel_downsampler(x)
|
598 |
+
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
599 |
+
xt = self.channel_downsampler_t(xt)
|
600 |
+
|
601 |
+
for idx, decode in enumerate(self.decoder):
|
602 |
+
skip = saved.pop(-1)
|
603 |
+
x, pre = decode(x, skip, lengths.pop(-1))
|
604 |
+
# `pre` contains the output just before final transposed convolution,
|
605 |
+
# which is used when the freq. and time branch separate.
|
606 |
+
|
607 |
+
offset = self.depth - len(self.tdecoder)
|
608 |
+
if idx >= offset:
|
609 |
+
tdec = self.tdecoder[idx - offset]
|
610 |
+
length_t = lengths_t.pop(-1)
|
611 |
+
if tdec.empty:
|
612 |
+
assert pre.shape[2] == 1, pre.shape
|
613 |
+
pre = pre[:, :, 0]
|
614 |
+
xt, _ = tdec(pre, None, length_t)
|
615 |
+
else:
|
616 |
+
skip = saved_t.pop(-1)
|
617 |
+
xt, _ = tdec(xt, skip, length_t)
|
618 |
+
|
619 |
+
# Let's make sure we used all stored skip connections.
|
620 |
+
assert len(saved) == 0
|
621 |
+
assert len(lengths_t) == 0
|
622 |
+
assert len(saved_t) == 0
|
623 |
+
|
624 |
+
S = len(self.sources)
|
625 |
+
x = x.view(B, S, -1, Fq, T)
|
626 |
+
x = x * std[:, None] + mean[:, None]
|
627 |
+
|
628 |
+
zout = self._mask(z, x)
|
629 |
+
if self.use_train_segment:
|
630 |
+
if self.training:
|
631 |
+
x = self._ispec(zout, length)
|
632 |
+
else:
|
633 |
+
x = self._ispec(zout, training_length)
|
634 |
+
else:
|
635 |
+
x = self._ispec(zout, length)
|
636 |
+
|
637 |
+
if self.use_train_segment:
|
638 |
+
if self.training:
|
639 |
+
xt = xt.view(B, S, -1, length)
|
640 |
+
else:
|
641 |
+
xt = xt.view(B, S, -1, training_length)
|
642 |
+
else:
|
643 |
+
xt = xt.view(B, S, -1, length)
|
644 |
+
xt = xt * stdt[:, None] + meant[:, None]
|
645 |
+
x = xt + x
|
646 |
+
if length_pre_pad:
|
647 |
+
x = x[..., :length_pre_pad]
|
648 |
+
return x
|
demucs3/spec.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Conveniance wrapper to perform STFT and iSTFT"""
|
7 |
+
|
8 |
+
import torch as th
|
9 |
+
|
10 |
+
|
11 |
+
def spectro(x, n_fft=512, hop_length=None, pad=0):
|
12 |
+
*other, length = x.shape
|
13 |
+
x = x.reshape(-1, length)
|
14 |
+
z = th.stft(x,
|
15 |
+
n_fft * (1 + pad),
|
16 |
+
hop_length or n_fft // 4,
|
17 |
+
window=th.hann_window(n_fft).to(x),
|
18 |
+
win_length=n_fft,
|
19 |
+
normalized=True,
|
20 |
+
center=True,
|
21 |
+
return_complex=True,
|
22 |
+
pad_mode='reflect')
|
23 |
+
_, freqs, frame = z.shape
|
24 |
+
return z.view(*other, freqs, frame)
|
25 |
+
|
26 |
+
|
27 |
+
def ispectro(z, hop_length=None, length=None, pad=0):
|
28 |
+
*other, freqs, frames = z.shape
|
29 |
+
n_fft = 2 * freqs - 2
|
30 |
+
z = z.view(-1, freqs, frames)
|
31 |
+
win_length = n_fft // (1 + pad)
|
32 |
+
x = th.istft(z,
|
33 |
+
n_fft,
|
34 |
+
hop_length,
|
35 |
+
window=th.hann_window(win_length).to(z.real),
|
36 |
+
win_length=win_length,
|
37 |
+
normalized=True,
|
38 |
+
length=length,
|
39 |
+
center=True)
|
40 |
+
_, length = x.shape
|
41 |
+
return x.view(*other, length)
|
demucs3/states.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""
|
7 |
+
Utilities to save and load models.
|
8 |
+
"""
|
9 |
+
from contextlib import contextmanager
|
10 |
+
|
11 |
+
import functools
|
12 |
+
import hashlib
|
13 |
+
import inspect
|
14 |
+
import io
|
15 |
+
from pathlib import Path
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
from omegaconf import OmegaConf
|
19 |
+
from diffq import DiffQuantizer, UniformQuantizer, restore_quantized_state
|
20 |
+
import torch
|
21 |
+
|
22 |
+
|
23 |
+
def get_quantizer(model, args, optimizer=None):
|
24 |
+
"""Return the quantizer given the XP quantization args."""
|
25 |
+
quantizer = None
|
26 |
+
if args.diffq:
|
27 |
+
quantizer = DiffQuantizer(
|
28 |
+
model, min_size=args.min_size, group_size=args.group_size)
|
29 |
+
if optimizer is not None:
|
30 |
+
quantizer.setup_optimizer(optimizer)
|
31 |
+
elif args.qat:
|
32 |
+
quantizer = UniformQuantizer(
|
33 |
+
model, bits=args.qat, min_size=args.min_size)
|
34 |
+
return quantizer
|
35 |
+
|
36 |
+
|
37 |
+
def load_model(path_or_package, strict=False):
|
38 |
+
"""Load a model from the given serialized model, either given as a dict (already loaded)
|
39 |
+
or a path to a file on disk."""
|
40 |
+
if isinstance(path_or_package, dict):
|
41 |
+
package = path_or_package
|
42 |
+
elif isinstance(path_or_package, (str, Path)):
|
43 |
+
with warnings.catch_warnings():
|
44 |
+
warnings.simplefilter("ignore")
|
45 |
+
path = path_or_package
|
46 |
+
package = torch.load(path, 'cpu')
|
47 |
+
else:
|
48 |
+
raise ValueError(f"Invalid type for {path_or_package}.")
|
49 |
+
|
50 |
+
klass = package["klass"]
|
51 |
+
args = package["args"]
|
52 |
+
kwargs = package["kwargs"]
|
53 |
+
|
54 |
+
if strict:
|
55 |
+
model = klass(*args, **kwargs)
|
56 |
+
else:
|
57 |
+
sig = inspect.signature(klass)
|
58 |
+
for key in list(kwargs):
|
59 |
+
if key not in sig.parameters:
|
60 |
+
warnings.warn("Dropping inexistant parameter " + key)
|
61 |
+
del kwargs[key]
|
62 |
+
model = klass(*args, **kwargs)
|
63 |
+
|
64 |
+
state = package["state"]
|
65 |
+
|
66 |
+
set_state(model, state)
|
67 |
+
return model
|
68 |
+
|
69 |
+
|
70 |
+
def get_state(model, quantizer, half=False):
|
71 |
+
"""Get the state from a model, potentially with quantization applied.
|
72 |
+
If `half` is True, model are stored as half precision, which shouldn't impact performance
|
73 |
+
but half the state size."""
|
74 |
+
if quantizer is None:
|
75 |
+
dtype = torch.half if half else None
|
76 |
+
state = {k: p.data.to(device='cpu', dtype=dtype) for k, p in model.state_dict().items()}
|
77 |
+
else:
|
78 |
+
state = quantizer.get_quantized_state()
|
79 |
+
state['__quantized'] = True
|
80 |
+
return state
|
81 |
+
|
82 |
+
|
83 |
+
def set_state(model, state, quantizer=None):
|
84 |
+
"""Set the state on a given model."""
|
85 |
+
if state.get('__quantized'):
|
86 |
+
if quantizer is not None:
|
87 |
+
quantizer.restore_quantized_state(model, state['quantized'])
|
88 |
+
else:
|
89 |
+
restore_quantized_state(model, state)
|
90 |
+
else:
|
91 |
+
model.load_state_dict(state)
|
92 |
+
return state
|
93 |
+
|
94 |
+
|
95 |
+
def save_with_checksum(content, path):
|
96 |
+
"""Save the given value on disk, along with a sha256 hash.
|
97 |
+
Should be used with the output of either `serialize_model` or `get_state`."""
|
98 |
+
buf = io.BytesIO()
|
99 |
+
torch.save(content, buf)
|
100 |
+
sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8]
|
101 |
+
|
102 |
+
path = path.parent / (path.stem + "-" + sig + path.suffix)
|
103 |
+
path.write_bytes(buf.getvalue())
|
104 |
+
|
105 |
+
|
106 |
+
def serialize_model(model, training_args, quantizer=None, half=True):
|
107 |
+
args, kwargs = model._init_args_kwargs
|
108 |
+
klass = model.__class__
|
109 |
+
|
110 |
+
state = get_state(model, quantizer, half)
|
111 |
+
return {
|
112 |
+
'klass': klass,
|
113 |
+
'args': args,
|
114 |
+
'kwargs': kwargs,
|
115 |
+
'state': state,
|
116 |
+
'training_args': OmegaConf.to_container(training_args, resolve=True),
|
117 |
+
}
|
118 |
+
|
119 |
+
|
120 |
+
def copy_state(state):
|
121 |
+
return {k: v.cpu().clone() for k, v in state.items()}
|
122 |
+
|
123 |
+
|
124 |
+
@contextmanager
|
125 |
+
def swap_state(model, state):
|
126 |
+
"""
|
127 |
+
Context manager that swaps the state of a model, e.g:
|
128 |
+
|
129 |
+
# model is in old state
|
130 |
+
with swap_state(model, new_state):
|
131 |
+
# model in new state
|
132 |
+
# model back to old state
|
133 |
+
"""
|
134 |
+
old_state = copy_state(model.state_dict())
|
135 |
+
model.load_state_dict(state, strict=False)
|
136 |
+
try:
|
137 |
+
yield
|
138 |
+
finally:
|
139 |
+
model.load_state_dict(old_state)
|
140 |
+
|
141 |
+
|
142 |
+
def capture_init(init):
|
143 |
+
@functools.wraps(init)
|
144 |
+
def __init__(self, *args, **kwargs):
|
145 |
+
self._init_args_kwargs = (args, kwargs)
|
146 |
+
init(self, *args, **kwargs)
|
147 |
+
|
148 |
+
return __init__
|
demucs3/transformer.py
ADDED
@@ -0,0 +1,839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019-present, Meta, Inc.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# First author is Simon Rouard.
|
7 |
+
|
8 |
+
import random
|
9 |
+
import typing as tp
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import numpy as np
|
15 |
+
import math
|
16 |
+
from einops import rearrange
|
17 |
+
|
18 |
+
|
19 |
+
def create_sin_embedding(
|
20 |
+
length: int, dim: int, shift: int = 0, device="cpu", max_period=10000
|
21 |
+
):
|
22 |
+
# We aim for TBC format
|
23 |
+
assert dim % 2 == 0
|
24 |
+
pos = shift + torch.arange(length, device=device).view(-1, 1, 1)
|
25 |
+
half_dim = dim // 2
|
26 |
+
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
|
27 |
+
phase = pos / (max_period ** (adim / (half_dim - 1)))
|
28 |
+
return torch.cat(
|
29 |
+
[
|
30 |
+
torch.cos(phase),
|
31 |
+
torch.sin(phase),
|
32 |
+
],
|
33 |
+
dim=-1,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def create_2d_sin_embedding(d_model, height, width, device="cpu", max_period=10000):
|
38 |
+
"""
|
39 |
+
:param d_model: dimension of the model
|
40 |
+
:param height: height of the positions
|
41 |
+
:param width: width of the positions
|
42 |
+
:return: d_model*height*width position matrix
|
43 |
+
"""
|
44 |
+
if d_model % 4 != 0:
|
45 |
+
raise ValueError(
|
46 |
+
"Cannot use sin/cos positional encoding with "
|
47 |
+
"odd dimension (got dim={:d})".format(d_model)
|
48 |
+
)
|
49 |
+
pe = torch.zeros(d_model, height, width)
|
50 |
+
# Each dimension use half of d_model
|
51 |
+
d_model = int(d_model / 2)
|
52 |
+
div_term = torch.exp(
|
53 |
+
torch.arange(0.0, d_model, 2) * -(math.log(max_period) / d_model)
|
54 |
+
)
|
55 |
+
pos_w = torch.arange(0.0, width).unsqueeze(1)
|
56 |
+
pos_h = torch.arange(0.0, height).unsqueeze(1)
|
57 |
+
pe[0:d_model:2, :, :] = (
|
58 |
+
torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
|
59 |
+
)
|
60 |
+
pe[1:d_model:2, :, :] = (
|
61 |
+
torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
|
62 |
+
)
|
63 |
+
pe[d_model::2, :, :] = (
|
64 |
+
torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
|
65 |
+
)
|
66 |
+
pe[d_model + 1:: 2, :, :] = (
|
67 |
+
torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
|
68 |
+
)
|
69 |
+
|
70 |
+
return pe[None, :].to(device)
|
71 |
+
|
72 |
+
|
73 |
+
def create_sin_embedding_cape(
|
74 |
+
length: int,
|
75 |
+
dim: int,
|
76 |
+
batch_size: int,
|
77 |
+
mean_normalize: bool,
|
78 |
+
augment: bool, # True during training
|
79 |
+
max_global_shift: float = 0.0, # delta max
|
80 |
+
max_local_shift: float = 0.0, # epsilon max
|
81 |
+
max_scale: float = 1.0,
|
82 |
+
device: str = "cpu",
|
83 |
+
max_period: float = 10000.0,
|
84 |
+
):
|
85 |
+
# We aim for TBC format
|
86 |
+
assert dim % 2 == 0
|
87 |
+
pos = 1.0 * torch.arange(length).view(-1, 1, 1) # (length, 1, 1)
|
88 |
+
pos = pos.repeat(1, batch_size, 1) # (length, batch_size, 1)
|
89 |
+
if mean_normalize:
|
90 |
+
pos -= torch.nanmean(pos, dim=0, keepdim=True)
|
91 |
+
|
92 |
+
if augment:
|
93 |
+
delta = np.random.uniform(
|
94 |
+
-max_global_shift, +max_global_shift, size=[1, batch_size, 1]
|
95 |
+
)
|
96 |
+
delta_local = np.random.uniform(
|
97 |
+
-max_local_shift, +max_local_shift, size=[length, batch_size, 1]
|
98 |
+
)
|
99 |
+
log_lambdas = np.random.uniform(
|
100 |
+
-np.log(max_scale), +np.log(max_scale), size=[1, batch_size, 1]
|
101 |
+
)
|
102 |
+
pos = (pos + delta + delta_local) * np.exp(log_lambdas)
|
103 |
+
|
104 |
+
pos = pos.to(device)
|
105 |
+
|
106 |
+
half_dim = dim // 2
|
107 |
+
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
|
108 |
+
phase = pos / (max_period ** (adim / (half_dim - 1)))
|
109 |
+
return torch.cat(
|
110 |
+
[
|
111 |
+
torch.cos(phase),
|
112 |
+
torch.sin(phase),
|
113 |
+
],
|
114 |
+
dim=-1,
|
115 |
+
).float()
|
116 |
+
|
117 |
+
|
118 |
+
def get_causal_mask(length):
|
119 |
+
pos = torch.arange(length)
|
120 |
+
return pos > pos[:, None]
|
121 |
+
|
122 |
+
|
123 |
+
def get_elementary_mask(
|
124 |
+
T1,
|
125 |
+
T2,
|
126 |
+
mask_type,
|
127 |
+
sparse_attn_window,
|
128 |
+
global_window,
|
129 |
+
mask_random_seed,
|
130 |
+
sparsity,
|
131 |
+
device,
|
132 |
+
):
|
133 |
+
"""
|
134 |
+
When the input of the Decoder has length T1 and the output T2
|
135 |
+
The mask matrix has shape (T2, T1)
|
136 |
+
"""
|
137 |
+
assert mask_type in ["diag", "jmask", "random", "global"]
|
138 |
+
|
139 |
+
if mask_type == "global":
|
140 |
+
mask = torch.zeros(T2, T1, dtype=torch.bool)
|
141 |
+
mask[:, :global_window] = True
|
142 |
+
line_window = int(global_window * T2 / T1)
|
143 |
+
mask[:line_window, :] = True
|
144 |
+
|
145 |
+
if mask_type == "diag":
|
146 |
+
|
147 |
+
mask = torch.zeros(T2, T1, dtype=torch.bool)
|
148 |
+
rows = torch.arange(T2)[:, None]
|
149 |
+
cols = (
|
150 |
+
(T1 / T2 * rows + torch.arange(-sparse_attn_window, sparse_attn_window + 1))
|
151 |
+
.long()
|
152 |
+
.clamp(0, T1 - 1)
|
153 |
+
)
|
154 |
+
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
|
155 |
+
|
156 |
+
elif mask_type == "jmask":
|
157 |
+
mask = torch.zeros(T2 + 2, T1 + 2, dtype=torch.bool)
|
158 |
+
rows = torch.arange(T2 + 2)[:, None]
|
159 |
+
t = torch.arange(0, int((2 * T1) ** 0.5 + 1))
|
160 |
+
t = (t * (t + 1) / 2).int()
|
161 |
+
t = torch.cat([-t.flip(0)[:-1], t])
|
162 |
+
cols = (T1 / T2 * rows + t).long().clamp(0, T1 + 1)
|
163 |
+
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
|
164 |
+
mask = mask[1:-1, 1:-1]
|
165 |
+
|
166 |
+
elif mask_type == "random":
|
167 |
+
gene = torch.Generator(device=device)
|
168 |
+
gene.manual_seed(mask_random_seed)
|
169 |
+
mask = (
|
170 |
+
torch.rand(T1 * T2, generator=gene, device=device).reshape(T2, T1)
|
171 |
+
> sparsity
|
172 |
+
)
|
173 |
+
|
174 |
+
mask = mask.to(device)
|
175 |
+
return mask
|
176 |
+
|
177 |
+
|
178 |
+
def get_mask(
|
179 |
+
T1,
|
180 |
+
T2,
|
181 |
+
mask_type,
|
182 |
+
sparse_attn_window,
|
183 |
+
global_window,
|
184 |
+
mask_random_seed,
|
185 |
+
sparsity,
|
186 |
+
device,
|
187 |
+
):
|
188 |
+
"""
|
189 |
+
Return a SparseCSRTensor mask that is a combination of elementary masks
|
190 |
+
mask_type can be a combination of multiple masks: for instance "diag_jmask_random"
|
191 |
+
"""
|
192 |
+
from xformers.sparse import SparseCSRTensor
|
193 |
+
# create a list
|
194 |
+
mask_types = mask_type.split("_")
|
195 |
+
|
196 |
+
all_masks = [
|
197 |
+
get_elementary_mask(
|
198 |
+
T1,
|
199 |
+
T2,
|
200 |
+
mask,
|
201 |
+
sparse_attn_window,
|
202 |
+
global_window,
|
203 |
+
mask_random_seed,
|
204 |
+
sparsity,
|
205 |
+
device,
|
206 |
+
)
|
207 |
+
for mask in mask_types
|
208 |
+
]
|
209 |
+
|
210 |
+
final_mask = torch.stack(all_masks).sum(axis=0) > 0
|
211 |
+
|
212 |
+
return SparseCSRTensor.from_dense(final_mask[None])
|
213 |
+
|
214 |
+
|
215 |
+
class ScaledEmbedding(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
num_embeddings: int,
|
219 |
+
embedding_dim: int,
|
220 |
+
scale: float = 1.0,
|
221 |
+
boost: float = 3.0,
|
222 |
+
):
|
223 |
+
super().__init__()
|
224 |
+
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
225 |
+
self.embedding.weight.data *= scale / boost
|
226 |
+
self.boost = boost
|
227 |
+
|
228 |
+
@property
|
229 |
+
def weight(self):
|
230 |
+
return self.embedding.weight * self.boost
|
231 |
+
|
232 |
+
def forward(self, x):
|
233 |
+
return self.embedding(x) * self.boost
|
234 |
+
|
235 |
+
|
236 |
+
class LayerScale(nn.Module):
|
237 |
+
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
|
238 |
+
This rescales diagonaly residual outputs close to 0 initially, then learnt.
|
239 |
+
"""
|
240 |
+
|
241 |
+
def __init__(self, channels: int, init: float = 0, channel_last=False):
|
242 |
+
"""
|
243 |
+
channel_last = False corresponds to (B, C, T) tensors
|
244 |
+
channel_last = True corresponds to (T, B, C) tensors
|
245 |
+
"""
|
246 |
+
super().__init__()
|
247 |
+
self.channel_last = channel_last
|
248 |
+
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
|
249 |
+
self.scale.data[:] = init
|
250 |
+
|
251 |
+
def forward(self, x):
|
252 |
+
if self.channel_last:
|
253 |
+
return self.scale * x
|
254 |
+
else:
|
255 |
+
return self.scale[:, None] * x
|
256 |
+
|
257 |
+
|
258 |
+
class MyGroupNorm(nn.GroupNorm):
|
259 |
+
def __init__(self, *args, **kwargs):
|
260 |
+
super().__init__(*args, **kwargs)
|
261 |
+
|
262 |
+
def forward(self, x):
|
263 |
+
"""
|
264 |
+
x: (B, T, C)
|
265 |
+
if num_groups=1: Normalisation on all T and C together for each B
|
266 |
+
"""
|
267 |
+
x = x.transpose(1, 2)
|
268 |
+
return super().forward(x).transpose(1, 2)
|
269 |
+
|
270 |
+
|
271 |
+
class MyTransformerEncoderLayer(nn.TransformerEncoderLayer):
|
272 |
+
def __init__(
|
273 |
+
self,
|
274 |
+
d_model,
|
275 |
+
nhead,
|
276 |
+
dim_feedforward=2048,
|
277 |
+
dropout=0.1,
|
278 |
+
activation=F.relu,
|
279 |
+
group_norm=0,
|
280 |
+
norm_first=False,
|
281 |
+
norm_out=False,
|
282 |
+
layer_norm_eps=1e-5,
|
283 |
+
layer_scale=False,
|
284 |
+
init_values=1e-4,
|
285 |
+
device=None,
|
286 |
+
dtype=None,
|
287 |
+
sparse=False,
|
288 |
+
mask_type="diag",
|
289 |
+
mask_random_seed=42,
|
290 |
+
sparse_attn_window=500,
|
291 |
+
global_window=50,
|
292 |
+
auto_sparsity=False,
|
293 |
+
sparsity=0.95,
|
294 |
+
batch_first=False,
|
295 |
+
):
|
296 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
297 |
+
super().__init__(
|
298 |
+
d_model=d_model,
|
299 |
+
nhead=nhead,
|
300 |
+
dim_feedforward=dim_feedforward,
|
301 |
+
dropout=dropout,
|
302 |
+
activation=activation,
|
303 |
+
layer_norm_eps=layer_norm_eps,
|
304 |
+
batch_first=batch_first,
|
305 |
+
norm_first=norm_first,
|
306 |
+
device=device,
|
307 |
+
dtype=dtype,
|
308 |
+
)
|
309 |
+
self.sparse = sparse
|
310 |
+
self.auto_sparsity = auto_sparsity
|
311 |
+
if sparse:
|
312 |
+
if not auto_sparsity:
|
313 |
+
self.mask_type = mask_type
|
314 |
+
self.sparse_attn_window = sparse_attn_window
|
315 |
+
self.global_window = global_window
|
316 |
+
self.sparsity = sparsity
|
317 |
+
if group_norm:
|
318 |
+
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
319 |
+
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
320 |
+
|
321 |
+
self.norm_out = None
|
322 |
+
if self.norm_first & norm_out:
|
323 |
+
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
|
324 |
+
self.gamma_1 = (
|
325 |
+
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
326 |
+
)
|
327 |
+
self.gamma_2 = (
|
328 |
+
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
329 |
+
)
|
330 |
+
|
331 |
+
if sparse:
|
332 |
+
self.self_attn = MultiheadAttention(
|
333 |
+
d_model, nhead, dropout=dropout, batch_first=batch_first,
|
334 |
+
auto_sparsity=sparsity if auto_sparsity else 0,
|
335 |
+
)
|
336 |
+
self.__setattr__("src_mask", torch.zeros(1, 1))
|
337 |
+
self.mask_random_seed = mask_random_seed
|
338 |
+
|
339 |
+
def forward(self, src, src_mask=None, src_key_padding_mask=None):
|
340 |
+
"""
|
341 |
+
if batch_first = False, src shape is (T, B, C)
|
342 |
+
the case where batch_first=True is not covered
|
343 |
+
"""
|
344 |
+
device = src.device
|
345 |
+
x = src
|
346 |
+
T, B, C = x.shape
|
347 |
+
if self.sparse and not self.auto_sparsity:
|
348 |
+
assert src_mask is None
|
349 |
+
src_mask = self.src_mask
|
350 |
+
if src_mask.shape[-1] != T:
|
351 |
+
src_mask = get_mask(
|
352 |
+
T,
|
353 |
+
T,
|
354 |
+
self.mask_type,
|
355 |
+
self.sparse_attn_window,
|
356 |
+
self.global_window,
|
357 |
+
self.mask_random_seed,
|
358 |
+
self.sparsity,
|
359 |
+
device,
|
360 |
+
)
|
361 |
+
self.__setattr__("src_mask", src_mask)
|
362 |
+
|
363 |
+
if self.norm_first:
|
364 |
+
x = x + self.gamma_1(
|
365 |
+
self._sa_block(self.norm1(x), src_mask, src_key_padding_mask)
|
366 |
+
)
|
367 |
+
x = x + self.gamma_2(self._ff_block(self.norm2(x)))
|
368 |
+
|
369 |
+
if self.norm_out:
|
370 |
+
x = self.norm_out(x)
|
371 |
+
else:
|
372 |
+
x = self.norm1(
|
373 |
+
x + self.gamma_1(self._sa_block(x, src_mask, src_key_padding_mask))
|
374 |
+
)
|
375 |
+
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
|
376 |
+
|
377 |
+
return x
|
378 |
+
|
379 |
+
|
380 |
+
class CrossTransformerEncoderLayer(nn.Module):
|
381 |
+
def __init__(
|
382 |
+
self,
|
383 |
+
d_model: int,
|
384 |
+
nhead: int,
|
385 |
+
dim_feedforward: int = 2048,
|
386 |
+
dropout: float = 0.1,
|
387 |
+
activation=F.relu,
|
388 |
+
layer_norm_eps: float = 1e-5,
|
389 |
+
layer_scale: bool = False,
|
390 |
+
init_values: float = 1e-4,
|
391 |
+
norm_first: bool = False,
|
392 |
+
group_norm: bool = False,
|
393 |
+
norm_out: bool = False,
|
394 |
+
sparse=False,
|
395 |
+
mask_type="diag",
|
396 |
+
mask_random_seed=42,
|
397 |
+
sparse_attn_window=500,
|
398 |
+
global_window=50,
|
399 |
+
sparsity=0.95,
|
400 |
+
auto_sparsity=None,
|
401 |
+
device=None,
|
402 |
+
dtype=None,
|
403 |
+
batch_first=False,
|
404 |
+
):
|
405 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
406 |
+
super().__init__()
|
407 |
+
|
408 |
+
self.sparse = sparse
|
409 |
+
self.auto_sparsity = auto_sparsity
|
410 |
+
if sparse:
|
411 |
+
if not auto_sparsity:
|
412 |
+
self.mask_type = mask_type
|
413 |
+
self.sparse_attn_window = sparse_attn_window
|
414 |
+
self.global_window = global_window
|
415 |
+
self.sparsity = sparsity
|
416 |
+
|
417 |
+
self.cross_attn: nn.Module
|
418 |
+
self.cross_attn = nn.MultiheadAttention(
|
419 |
+
d_model, nhead, dropout=dropout, batch_first=batch_first)
|
420 |
+
# Implementation of Feedforward model
|
421 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
|
422 |
+
self.dropout = nn.Dropout(dropout)
|
423 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)
|
424 |
+
|
425 |
+
self.norm_first = norm_first
|
426 |
+
self.norm1: nn.Module
|
427 |
+
self.norm2: nn.Module
|
428 |
+
self.norm3: nn.Module
|
429 |
+
if group_norm:
|
430 |
+
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
431 |
+
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
432 |
+
self.norm3 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
433 |
+
else:
|
434 |
+
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
435 |
+
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
436 |
+
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
437 |
+
|
438 |
+
self.norm_out = None
|
439 |
+
if self.norm_first & norm_out:
|
440 |
+
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
|
441 |
+
|
442 |
+
self.gamma_1 = (
|
443 |
+
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
444 |
+
)
|
445 |
+
self.gamma_2 = (
|
446 |
+
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
447 |
+
)
|
448 |
+
|
449 |
+
self.dropout1 = nn.Dropout(dropout)
|
450 |
+
self.dropout2 = nn.Dropout(dropout)
|
451 |
+
|
452 |
+
# Legacy string support for activation function.
|
453 |
+
if isinstance(activation, str):
|
454 |
+
self.activation = self._get_activation_fn(activation)
|
455 |
+
else:
|
456 |
+
self.activation = activation
|
457 |
+
|
458 |
+
if sparse:
|
459 |
+
self.cross_attn = MultiheadAttention(
|
460 |
+
d_model, nhead, dropout=dropout, batch_first=batch_first,
|
461 |
+
auto_sparsity=sparsity if auto_sparsity else 0)
|
462 |
+
if not auto_sparsity:
|
463 |
+
self.__setattr__("mask", torch.zeros(1, 1))
|
464 |
+
self.mask_random_seed = mask_random_seed
|
465 |
+
|
466 |
+
def forward(self, q, k, mask=None):
|
467 |
+
"""
|
468 |
+
Args:
|
469 |
+
q: tensor of shape (T, B, C)
|
470 |
+
k: tensor of shape (S, B, C)
|
471 |
+
mask: tensor of shape (T, S)
|
472 |
+
|
473 |
+
"""
|
474 |
+
device = q.device
|
475 |
+
T, B, C = q.shape
|
476 |
+
S, B, C = k.shape
|
477 |
+
if self.sparse and not self.auto_sparsity:
|
478 |
+
assert mask is None
|
479 |
+
mask = self.mask
|
480 |
+
if mask.shape[-1] != S or mask.shape[-2] != T:
|
481 |
+
mask = get_mask(
|
482 |
+
S,
|
483 |
+
T,
|
484 |
+
self.mask_type,
|
485 |
+
self.sparse_attn_window,
|
486 |
+
self.global_window,
|
487 |
+
self.mask_random_seed,
|
488 |
+
self.sparsity,
|
489 |
+
device,
|
490 |
+
)
|
491 |
+
self.__setattr__("mask", mask)
|
492 |
+
|
493 |
+
if self.norm_first:
|
494 |
+
x = q + self.gamma_1(self._ca_block(self.norm1(q), self.norm2(k), mask))
|
495 |
+
x = x + self.gamma_2(self._ff_block(self.norm3(x)))
|
496 |
+
if self.norm_out:
|
497 |
+
x = self.norm_out(x)
|
498 |
+
else:
|
499 |
+
x = self.norm1(q + self.gamma_1(self._ca_block(q, k, mask)))
|
500 |
+
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
|
501 |
+
|
502 |
+
return x
|
503 |
+
|
504 |
+
# self-attention block
|
505 |
+
def _ca_block(self, q, k, attn_mask=None):
|
506 |
+
x = self.cross_attn(q, k, k, attn_mask=attn_mask, need_weights=False)[0]
|
507 |
+
return self.dropout1(x)
|
508 |
+
|
509 |
+
# feed forward block
|
510 |
+
def _ff_block(self, x):
|
511 |
+
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
512 |
+
return self.dropout2(x)
|
513 |
+
|
514 |
+
def _get_activation_fn(self, activation):
|
515 |
+
if activation == "relu":
|
516 |
+
return F.relu
|
517 |
+
elif activation == "gelu":
|
518 |
+
return F.gelu
|
519 |
+
|
520 |
+
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
521 |
+
|
522 |
+
|
523 |
+
# ----------------- MULTI-BLOCKS MODELS: -----------------------
|
524 |
+
|
525 |
+
|
526 |
+
class CrossTransformerEncoder(nn.Module):
|
527 |
+
def __init__(
|
528 |
+
self,
|
529 |
+
dim: int,
|
530 |
+
emb: str = "sin",
|
531 |
+
hidden_scale: float = 4.0,
|
532 |
+
num_heads: int = 8,
|
533 |
+
num_layers: int = 6,
|
534 |
+
cross_first: bool = False,
|
535 |
+
dropout: float = 0.0,
|
536 |
+
max_positions: int = 1000,
|
537 |
+
norm_in: bool = True,
|
538 |
+
norm_in_group: bool = False,
|
539 |
+
group_norm: int = False,
|
540 |
+
norm_first: bool = False,
|
541 |
+
norm_out: bool = False,
|
542 |
+
max_period: float = 10000.0,
|
543 |
+
weight_decay: float = 0.0,
|
544 |
+
lr: tp.Optional[float] = None,
|
545 |
+
layer_scale: bool = False,
|
546 |
+
gelu: bool = True,
|
547 |
+
sin_random_shift: int = 0,
|
548 |
+
weight_pos_embed: float = 1.0,
|
549 |
+
cape_mean_normalize: bool = True,
|
550 |
+
cape_augment: bool = True,
|
551 |
+
cape_glob_loc_scale: list = [5000.0, 1.0, 1.4],
|
552 |
+
sparse_self_attn: bool = False,
|
553 |
+
sparse_cross_attn: bool = False,
|
554 |
+
mask_type: str = "diag",
|
555 |
+
mask_random_seed: int = 42,
|
556 |
+
sparse_attn_window: int = 500,
|
557 |
+
global_window: int = 50,
|
558 |
+
auto_sparsity: bool = False,
|
559 |
+
sparsity: float = 0.95,
|
560 |
+
):
|
561 |
+
super().__init__()
|
562 |
+
"""
|
563 |
+
"""
|
564 |
+
assert dim % num_heads == 0
|
565 |
+
|
566 |
+
hidden_dim = int(dim * hidden_scale)
|
567 |
+
|
568 |
+
self.num_layers = num_layers
|
569 |
+
# classic parity = 1 means that if idx%2 == 1 there is a
|
570 |
+
# classical encoder else there is a cross encoder
|
571 |
+
self.classic_parity = 1 if cross_first else 0
|
572 |
+
self.emb = emb
|
573 |
+
self.max_period = max_period
|
574 |
+
self.weight_decay = weight_decay
|
575 |
+
self.weight_pos_embed = weight_pos_embed
|
576 |
+
self.sin_random_shift = sin_random_shift
|
577 |
+
if emb == "cape":
|
578 |
+
self.cape_mean_normalize = cape_mean_normalize
|
579 |
+
self.cape_augment = cape_augment
|
580 |
+
self.cape_glob_loc_scale = cape_glob_loc_scale
|
581 |
+
if emb == "scaled":
|
582 |
+
self.position_embeddings = ScaledEmbedding(max_positions, dim, scale=0.2)
|
583 |
+
|
584 |
+
self.lr = lr
|
585 |
+
|
586 |
+
activation: tp.Any = F.gelu if gelu else F.relu
|
587 |
+
|
588 |
+
self.norm_in: nn.Module
|
589 |
+
self.norm_in_t: nn.Module
|
590 |
+
if norm_in:
|
591 |
+
self.norm_in = nn.LayerNorm(dim)
|
592 |
+
self.norm_in_t = nn.LayerNorm(dim)
|
593 |
+
elif norm_in_group:
|
594 |
+
self.norm_in = MyGroupNorm(int(norm_in_group), dim)
|
595 |
+
self.norm_in_t = MyGroupNorm(int(norm_in_group), dim)
|
596 |
+
else:
|
597 |
+
self.norm_in = nn.Identity()
|
598 |
+
self.norm_in_t = nn.Identity()
|
599 |
+
|
600 |
+
# spectrogram layers
|
601 |
+
self.layers = nn.ModuleList()
|
602 |
+
# temporal layers
|
603 |
+
self.layers_t = nn.ModuleList()
|
604 |
+
|
605 |
+
kwargs_common = {
|
606 |
+
"d_model": dim,
|
607 |
+
"nhead": num_heads,
|
608 |
+
"dim_feedforward": hidden_dim,
|
609 |
+
"dropout": dropout,
|
610 |
+
"activation": activation,
|
611 |
+
"group_norm": group_norm,
|
612 |
+
"norm_first": norm_first,
|
613 |
+
"norm_out": norm_out,
|
614 |
+
"layer_scale": layer_scale,
|
615 |
+
"mask_type": mask_type,
|
616 |
+
"mask_random_seed": mask_random_seed,
|
617 |
+
"sparse_attn_window": sparse_attn_window,
|
618 |
+
"global_window": global_window,
|
619 |
+
"sparsity": sparsity,
|
620 |
+
"auto_sparsity": auto_sparsity,
|
621 |
+
"batch_first": True,
|
622 |
+
}
|
623 |
+
|
624 |
+
kwargs_classic_encoder = dict(kwargs_common)
|
625 |
+
kwargs_classic_encoder.update({
|
626 |
+
"sparse": sparse_self_attn,
|
627 |
+
})
|
628 |
+
kwargs_cross_encoder = dict(kwargs_common)
|
629 |
+
kwargs_cross_encoder.update({
|
630 |
+
"sparse": sparse_cross_attn,
|
631 |
+
})
|
632 |
+
|
633 |
+
for idx in range(num_layers):
|
634 |
+
if idx % 2 == self.classic_parity:
|
635 |
+
|
636 |
+
self.layers.append(MyTransformerEncoderLayer(**kwargs_classic_encoder))
|
637 |
+
self.layers_t.append(
|
638 |
+
MyTransformerEncoderLayer(**kwargs_classic_encoder)
|
639 |
+
)
|
640 |
+
|
641 |
+
else:
|
642 |
+
self.layers.append(CrossTransformerEncoderLayer(**kwargs_cross_encoder))
|
643 |
+
|
644 |
+
self.layers_t.append(
|
645 |
+
CrossTransformerEncoderLayer(**kwargs_cross_encoder)
|
646 |
+
)
|
647 |
+
|
648 |
+
def forward(self, x, xt):
|
649 |
+
B, C, Fr, T1 = x.shape
|
650 |
+
pos_emb_2d = create_2d_sin_embedding(
|
651 |
+
C, Fr, T1, x.device, self.max_period
|
652 |
+
) # (1, C, Fr, T1)
|
653 |
+
pos_emb_2d = rearrange(pos_emb_2d, "b c fr t1 -> b (t1 fr) c")
|
654 |
+
x = rearrange(x, "b c fr t1 -> b (t1 fr) c")
|
655 |
+
x = self.norm_in(x)
|
656 |
+
x = x + self.weight_pos_embed * pos_emb_2d
|
657 |
+
|
658 |
+
B, C, T2 = xt.shape
|
659 |
+
xt = rearrange(xt, "b c t2 -> b t2 c") # now T2, B, C
|
660 |
+
pos_emb = self._get_pos_embedding(T2, B, C, x.device)
|
661 |
+
pos_emb = rearrange(pos_emb, "t2 b c -> b t2 c")
|
662 |
+
xt = self.norm_in_t(xt)
|
663 |
+
xt = xt + self.weight_pos_embed * pos_emb
|
664 |
+
|
665 |
+
for idx in range(self.num_layers):
|
666 |
+
if idx % 2 == self.classic_parity:
|
667 |
+
x = self.layers[idx](x)
|
668 |
+
xt = self.layers_t[idx](xt)
|
669 |
+
else:
|
670 |
+
old_x = x
|
671 |
+
x = self.layers[idx](x, xt)
|
672 |
+
xt = self.layers_t[idx](xt, old_x)
|
673 |
+
|
674 |
+
x = rearrange(x, "b (t1 fr) c -> b c fr t1", t1=T1)
|
675 |
+
xt = rearrange(xt, "b t2 c -> b c t2")
|
676 |
+
return x, xt
|
677 |
+
|
678 |
+
def _get_pos_embedding(self, T, B, C, device):
|
679 |
+
if self.emb == "sin":
|
680 |
+
shift = random.randrange(self.sin_random_shift + 1)
|
681 |
+
pos_emb = create_sin_embedding(
|
682 |
+
T, C, shift=shift, device=device, max_period=self.max_period
|
683 |
+
)
|
684 |
+
elif self.emb == "cape":
|
685 |
+
if self.training:
|
686 |
+
pos_emb = create_sin_embedding_cape(
|
687 |
+
T,
|
688 |
+
C,
|
689 |
+
B,
|
690 |
+
device=device,
|
691 |
+
max_period=self.max_period,
|
692 |
+
mean_normalize=self.cape_mean_normalize,
|
693 |
+
augment=self.cape_augment,
|
694 |
+
max_global_shift=self.cape_glob_loc_scale[0],
|
695 |
+
max_local_shift=self.cape_glob_loc_scale[1],
|
696 |
+
max_scale=self.cape_glob_loc_scale[2],
|
697 |
+
)
|
698 |
+
else:
|
699 |
+
pos_emb = create_sin_embedding_cape(
|
700 |
+
T,
|
701 |
+
C,
|
702 |
+
B,
|
703 |
+
device=device,
|
704 |
+
max_period=self.max_period,
|
705 |
+
mean_normalize=self.cape_mean_normalize,
|
706 |
+
augment=False,
|
707 |
+
)
|
708 |
+
|
709 |
+
elif self.emb == "scaled":
|
710 |
+
pos = torch.arange(T, device=device)
|
711 |
+
pos_emb = self.position_embeddings(pos)[:, None]
|
712 |
+
|
713 |
+
return pos_emb
|
714 |
+
|
715 |
+
def make_optim_group(self):
|
716 |
+
group = {"params": list(self.parameters()), "weight_decay": self.weight_decay}
|
717 |
+
if self.lr is not None:
|
718 |
+
group["lr"] = self.lr
|
719 |
+
return group
|
720 |
+
|
721 |
+
|
722 |
+
# Attention Modules
|
723 |
+
|
724 |
+
|
725 |
+
class MultiheadAttention(nn.Module):
|
726 |
+
def __init__(
|
727 |
+
self,
|
728 |
+
embed_dim,
|
729 |
+
num_heads,
|
730 |
+
dropout=0.0,
|
731 |
+
bias=True,
|
732 |
+
add_bias_kv=False,
|
733 |
+
add_zero_attn=False,
|
734 |
+
kdim=None,
|
735 |
+
vdim=None,
|
736 |
+
batch_first=False,
|
737 |
+
auto_sparsity=None,
|
738 |
+
):
|
739 |
+
super().__init__()
|
740 |
+
assert auto_sparsity is not None, "sanity check"
|
741 |
+
self.num_heads = num_heads
|
742 |
+
self.q = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
743 |
+
self.k = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
744 |
+
self.v = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
745 |
+
self.attn_drop = torch.nn.Dropout(dropout)
|
746 |
+
self.proj = torch.nn.Linear(embed_dim, embed_dim, bias)
|
747 |
+
self.proj_drop = torch.nn.Dropout(dropout)
|
748 |
+
self.batch_first = batch_first
|
749 |
+
self.auto_sparsity = auto_sparsity
|
750 |
+
|
751 |
+
def forward(
|
752 |
+
self,
|
753 |
+
query,
|
754 |
+
key,
|
755 |
+
value,
|
756 |
+
key_padding_mask=None,
|
757 |
+
need_weights=True,
|
758 |
+
attn_mask=None,
|
759 |
+
average_attn_weights=True,
|
760 |
+
):
|
761 |
+
|
762 |
+
if not self.batch_first: # N, B, C
|
763 |
+
query = query.permute(1, 0, 2) # B, N_q, C
|
764 |
+
key = key.permute(1, 0, 2) # B, N_k, C
|
765 |
+
value = value.permute(1, 0, 2) # B, N_k, C
|
766 |
+
B, N_q, C = query.shape
|
767 |
+
B, N_k, C = key.shape
|
768 |
+
|
769 |
+
q = (
|
770 |
+
self.q(query)
|
771 |
+
.reshape(B, N_q, self.num_heads, C // self.num_heads)
|
772 |
+
.permute(0, 2, 1, 3)
|
773 |
+
)
|
774 |
+
q = q.flatten(0, 1)
|
775 |
+
k = (
|
776 |
+
self.k(key)
|
777 |
+
.reshape(B, N_k, self.num_heads, C // self.num_heads)
|
778 |
+
.permute(0, 2, 1, 3)
|
779 |
+
)
|
780 |
+
k = k.flatten(0, 1)
|
781 |
+
v = (
|
782 |
+
self.v(value)
|
783 |
+
.reshape(B, N_k, self.num_heads, C // self.num_heads)
|
784 |
+
.permute(0, 2, 1, 3)
|
785 |
+
)
|
786 |
+
v = v.flatten(0, 1)
|
787 |
+
|
788 |
+
if self.auto_sparsity:
|
789 |
+
assert attn_mask is None
|
790 |
+
x = dynamic_sparse_attention(q, k, v, sparsity=self.auto_sparsity)
|
791 |
+
else:
|
792 |
+
x = scaled_dot_product_attention(q, k, v, attn_mask, dropout=self.attn_drop)
|
793 |
+
x = x.reshape(B, self.num_heads, N_q, C // self.num_heads)
|
794 |
+
|
795 |
+
x = x.transpose(1, 2).reshape(B, N_q, C)
|
796 |
+
x = self.proj(x)
|
797 |
+
x = self.proj_drop(x)
|
798 |
+
if not self.batch_first:
|
799 |
+
x = x.permute(1, 0, 2)
|
800 |
+
return x, None
|
801 |
+
|
802 |
+
|
803 |
+
def scaled_query_key_softmax(q, k, att_mask):
|
804 |
+
from xformers.ops import masked_matmul
|
805 |
+
q = q / (k.size(-1)) ** 0.5
|
806 |
+
att = masked_matmul(q, k.transpose(-2, -1), att_mask)
|
807 |
+
att = torch.nn.functional.softmax(att, -1)
|
808 |
+
return att
|
809 |
+
|
810 |
+
|
811 |
+
def scaled_dot_product_attention(q, k, v, att_mask, dropout):
|
812 |
+
att = scaled_query_key_softmax(q, k, att_mask=att_mask)
|
813 |
+
att = dropout(att)
|
814 |
+
y = att @ v
|
815 |
+
return y
|
816 |
+
|
817 |
+
|
818 |
+
def _compute_buckets(x, R):
|
819 |
+
qq = torch.einsum('btf,bfhi->bhti', x, R)
|
820 |
+
qq = torch.cat([qq, -qq], dim=-1)
|
821 |
+
buckets = qq.argmax(dim=-1)
|
822 |
+
|
823 |
+
return buckets.permute(0, 2, 1).byte().contiguous()
|
824 |
+
|
825 |
+
|
826 |
+
def dynamic_sparse_attention(query, key, value, sparsity, infer_sparsity=True, attn_bias=None):
|
827 |
+
# assert False, "The code for the custom sparse kernel is not ready for release yet."
|
828 |
+
from xformers.ops import find_locations, sparse_memory_efficient_attention
|
829 |
+
n_hashes = 32
|
830 |
+
proj_size = 4
|
831 |
+
query, key, value = [x.contiguous() for x in [query, key, value]]
|
832 |
+
with torch.no_grad():
|
833 |
+
R = torch.randn(1, query.shape[-1], n_hashes, proj_size // 2, device=query.device)
|
834 |
+
bucket_query = _compute_buckets(query, R)
|
835 |
+
bucket_key = _compute_buckets(key, R)
|
836 |
+
row_offsets, column_indices = find_locations(
|
837 |
+
bucket_query, bucket_key, sparsity, infer_sparsity)
|
838 |
+
return sparse_memory_efficient_attention(
|
839 |
+
query, key, value, row_offsets, column_indices, attn_bias)
|
demucs3/utils.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from collections import defaultdict
|
8 |
+
from contextlib import contextmanager
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
import tempfile
|
12 |
+
import typing as tp
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from torch.utils.data import Subset
|
17 |
+
|
18 |
+
|
19 |
+
def unfold(a, kernel_size, stride):
|
20 |
+
"""Given input of size [*OT, T], output Tensor of size [*OT, F, K]
|
21 |
+
with K the kernel size, by extracting frames with the given stride.
|
22 |
+
|
23 |
+
This will pad the input so that `F = ceil(T / K)`.
|
24 |
+
|
25 |
+
see https://github.com/pytorch/pytorch/issues/60466
|
26 |
+
"""
|
27 |
+
*shape, length = a.shape
|
28 |
+
n_frames = math.ceil(length / stride)
|
29 |
+
tgt_length = (n_frames - 1) * stride + kernel_size
|
30 |
+
a = F.pad(a, (0, tgt_length - length))
|
31 |
+
strides = list(a.stride())
|
32 |
+
assert strides[-1] == 1, 'data should be contiguous'
|
33 |
+
strides = strides[:-1] + [stride, 1]
|
34 |
+
return a.as_strided([*shape, n_frames, kernel_size], strides)
|
35 |
+
|
36 |
+
|
37 |
+
def center_trim(tensor: torch.Tensor, reference: tp.Union[torch.Tensor, int]):
|
38 |
+
"""
|
39 |
+
Center trim `tensor` with respect to `reference`, along the last dimension.
|
40 |
+
`reference` can also be a number, representing the length to trim to.
|
41 |
+
If the size difference != 0 mod 2, the extra sample is removed on the right side.
|
42 |
+
"""
|
43 |
+
ref_size: int
|
44 |
+
if isinstance(reference, torch.Tensor):
|
45 |
+
ref_size = reference.size(-1)
|
46 |
+
else:
|
47 |
+
ref_size = reference
|
48 |
+
delta = tensor.size(-1) - ref_size
|
49 |
+
if delta < 0:
|
50 |
+
raise ValueError("tensor must be larger than reference. " f"Delta is {delta}.")
|
51 |
+
if delta:
|
52 |
+
tensor = tensor[..., delta // 2:-(delta - delta // 2)]
|
53 |
+
return tensor
|
54 |
+
|
55 |
+
|
56 |
+
def pull_metric(history: tp.List[dict], name: str):
|
57 |
+
out = []
|
58 |
+
for metrics in history:
|
59 |
+
metric = metrics
|
60 |
+
for part in name.split("."):
|
61 |
+
metric = metric[part]
|
62 |
+
out.append(metric)
|
63 |
+
return out
|
64 |
+
|
65 |
+
|
66 |
+
def EMA(beta: float = 1):
|
67 |
+
"""
|
68 |
+
Exponential Moving Average callback.
|
69 |
+
Returns a single function that can be called to repeatidly update the EMA
|
70 |
+
with a dict of metrics. The callback will return
|
71 |
+
the new averaged dict of metrics.
|
72 |
+
|
73 |
+
Note that for `beta=1`, this is just plain averaging.
|
74 |
+
"""
|
75 |
+
fix: tp.Dict[str, float] = defaultdict(float)
|
76 |
+
total: tp.Dict[str, float] = defaultdict(float)
|
77 |
+
|
78 |
+
def _update(metrics: dict, weight: float = 1) -> dict:
|
79 |
+
nonlocal total, fix
|
80 |
+
for key, value in metrics.items():
|
81 |
+
total[key] = total[key] * beta + weight * float(value)
|
82 |
+
fix[key] = fix[key] * beta + weight
|
83 |
+
return {key: tot / fix[key] for key, tot in total.items()}
|
84 |
+
return _update
|
85 |
+
|
86 |
+
|
87 |
+
def sizeof_fmt(num: float, suffix: str = 'B'):
|
88 |
+
"""
|
89 |
+
Given `num` bytes, return human readable size.
|
90 |
+
Taken from https://stackoverflow.com/a/1094933
|
91 |
+
"""
|
92 |
+
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
|
93 |
+
if abs(num) < 1024.0:
|
94 |
+
return "%3.1f%s%s" % (num, unit, suffix)
|
95 |
+
num /= 1024.0
|
96 |
+
return "%.1f%s%s" % (num, 'Yi', suffix)
|
97 |
+
|
98 |
+
|
99 |
+
@contextmanager
|
100 |
+
def temp_filenames(count: int, delete=True):
|
101 |
+
names = []
|
102 |
+
try:
|
103 |
+
for _ in range(count):
|
104 |
+
names.append(tempfile.NamedTemporaryFile(delete=False).name)
|
105 |
+
yield names
|
106 |
+
finally:
|
107 |
+
if delete:
|
108 |
+
for name in names:
|
109 |
+
os.unlink(name)
|
110 |
+
|
111 |
+
|
112 |
+
def random_subset(dataset, max_samples: int, seed: int = 42):
|
113 |
+
if max_samples >= len(dataset):
|
114 |
+
return dataset
|
115 |
+
|
116 |
+
generator = torch.Generator().manual_seed(seed)
|
117 |
+
perm = torch.randperm(len(dataset), generator=generator)
|
118 |
+
return Subset(dataset, perm[:max_samples].tolist())
|
119 |
+
|
120 |
+
|
121 |
+
class DummyPoolExecutor:
|
122 |
+
class DummyResult:
|
123 |
+
def __init__(self, func, *args, **kwargs):
|
124 |
+
self.func = func
|
125 |
+
self.args = args
|
126 |
+
self.kwargs = kwargs
|
127 |
+
|
128 |
+
def result(self):
|
129 |
+
return self.func(*self.args, **self.kwargs)
|
130 |
+
|
131 |
+
def __init__(self, workers=0):
|
132 |
+
pass
|
133 |
+
|
134 |
+
def submit(self, func, *args, **kwargs):
|
135 |
+
return DummyPoolExecutor.DummyResult(func, *args, **kwargs)
|
136 |
+
|
137 |
+
def __enter__(self):
|
138 |
+
return self
|
139 |
+
|
140 |
+
def __exit__(self, exc_type, exc_value, exc_tb):
|
141 |
+
return
|
demucs4/demucs.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
import typing as tp
|
9 |
+
|
10 |
+
import julius
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import functional as F
|
14 |
+
|
15 |
+
from .states import capture_init
|
16 |
+
from .utils import center_trim, unfold
|
17 |
+
from .transformer import LayerScale
|
18 |
+
|
19 |
+
|
20 |
+
class BLSTM(nn.Module):
|
21 |
+
"""
|
22 |
+
BiLSTM with same hidden units as input dim.
|
23 |
+
If `max_steps` is not None, input will be splitting in overlapping
|
24 |
+
chunks and the LSTM applied separately on each chunk.
|
25 |
+
"""
|
26 |
+
def __init__(self, dim, layers=1, max_steps=None, skip=False):
|
27 |
+
super().__init__()
|
28 |
+
assert max_steps is None or max_steps % 4 == 0
|
29 |
+
self.max_steps = max_steps
|
30 |
+
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
|
31 |
+
self.linear = nn.Linear(2 * dim, dim)
|
32 |
+
self.skip = skip
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
B, C, T = x.shape
|
36 |
+
y = x
|
37 |
+
framed = False
|
38 |
+
if self.max_steps is not None and T > self.max_steps:
|
39 |
+
width = self.max_steps
|
40 |
+
stride = width // 2
|
41 |
+
frames = unfold(x, width, stride)
|
42 |
+
nframes = frames.shape[2]
|
43 |
+
framed = True
|
44 |
+
x = frames.permute(0, 2, 1, 3).reshape(-1, C, width)
|
45 |
+
|
46 |
+
x = x.permute(2, 0, 1)
|
47 |
+
|
48 |
+
x = self.lstm(x)[0]
|
49 |
+
x = self.linear(x)
|
50 |
+
x = x.permute(1, 2, 0)
|
51 |
+
if framed:
|
52 |
+
out = []
|
53 |
+
frames = x.reshape(B, -1, C, width)
|
54 |
+
limit = stride // 2
|
55 |
+
for k in range(nframes):
|
56 |
+
if k == 0:
|
57 |
+
out.append(frames[:, k, :, :-limit])
|
58 |
+
elif k == nframes - 1:
|
59 |
+
out.append(frames[:, k, :, limit:])
|
60 |
+
else:
|
61 |
+
out.append(frames[:, k, :, limit:-limit])
|
62 |
+
out = torch.cat(out, -1)
|
63 |
+
out = out[..., :T]
|
64 |
+
x = out
|
65 |
+
if self.skip:
|
66 |
+
x = x + y
|
67 |
+
return x
|
68 |
+
|
69 |
+
|
70 |
+
def rescale_conv(conv, reference):
|
71 |
+
"""Rescale initial weight scale. It is unclear why it helps but it certainly does.
|
72 |
+
"""
|
73 |
+
std = conv.weight.std().detach()
|
74 |
+
scale = (std / reference)**0.5
|
75 |
+
conv.weight.data /= scale
|
76 |
+
if conv.bias is not None:
|
77 |
+
conv.bias.data /= scale
|
78 |
+
|
79 |
+
|
80 |
+
def rescale_module(module, reference):
|
81 |
+
for sub in module.modules():
|
82 |
+
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d, nn.Conv2d, nn.ConvTranspose2d)):
|
83 |
+
rescale_conv(sub, reference)
|
84 |
+
|
85 |
+
|
86 |
+
class DConv(nn.Module):
|
87 |
+
"""
|
88 |
+
New residual branches in each encoder layer.
|
89 |
+
This alternates dilated convolutions, potentially with LSTMs and attention.
|
90 |
+
Also before entering each residual branch, dimension is projected on a smaller subspace,
|
91 |
+
e.g. of dim `channels // compress`.
|
92 |
+
"""
|
93 |
+
def __init__(self, channels: int, compress: float = 4, depth: int = 2, init: float = 1e-4,
|
94 |
+
norm=True, attn=False, heads=4, ndecay=4, lstm=False, gelu=True,
|
95 |
+
kernel=3, dilate=True):
|
96 |
+
"""
|
97 |
+
Args:
|
98 |
+
channels: input/output channels for residual branch.
|
99 |
+
compress: amount of channel compression inside the branch.
|
100 |
+
depth: number of layers in the residual branch. Each layer has its own
|
101 |
+
projection, and potentially LSTM and attention.
|
102 |
+
init: initial scale for LayerNorm.
|
103 |
+
norm: use GroupNorm.
|
104 |
+
attn: use LocalAttention.
|
105 |
+
heads: number of heads for the LocalAttention.
|
106 |
+
ndecay: number of decay controls in the LocalAttention.
|
107 |
+
lstm: use LSTM.
|
108 |
+
gelu: Use GELU activation.
|
109 |
+
kernel: kernel size for the (dilated) convolutions.
|
110 |
+
dilate: if true, use dilation, increasing with the depth.
|
111 |
+
"""
|
112 |
+
|
113 |
+
super().__init__()
|
114 |
+
assert kernel % 2 == 1
|
115 |
+
self.channels = channels
|
116 |
+
self.compress = compress
|
117 |
+
self.depth = abs(depth)
|
118 |
+
dilate = depth > 0
|
119 |
+
|
120 |
+
norm_fn: tp.Callable[[int], nn.Module]
|
121 |
+
norm_fn = lambda d: nn.Identity() # noqa
|
122 |
+
if norm:
|
123 |
+
norm_fn = lambda d: nn.GroupNorm(1, d) # noqa
|
124 |
+
|
125 |
+
hidden = int(channels / compress)
|
126 |
+
|
127 |
+
act: tp.Type[nn.Module]
|
128 |
+
if gelu:
|
129 |
+
act = nn.GELU
|
130 |
+
else:
|
131 |
+
act = nn.ReLU
|
132 |
+
|
133 |
+
self.layers = nn.ModuleList([])
|
134 |
+
for d in range(self.depth):
|
135 |
+
dilation = 2 ** d if dilate else 1
|
136 |
+
padding = dilation * (kernel // 2)
|
137 |
+
mods = [
|
138 |
+
nn.Conv1d(channels, hidden, kernel, dilation=dilation, padding=padding),
|
139 |
+
norm_fn(hidden), act(),
|
140 |
+
nn.Conv1d(hidden, 2 * channels, 1),
|
141 |
+
norm_fn(2 * channels), nn.GLU(1),
|
142 |
+
LayerScale(channels, init),
|
143 |
+
]
|
144 |
+
if attn:
|
145 |
+
mods.insert(3, LocalState(hidden, heads=heads, ndecay=ndecay))
|
146 |
+
if lstm:
|
147 |
+
mods.insert(3, BLSTM(hidden, layers=2, max_steps=200, skip=True))
|
148 |
+
layer = nn.Sequential(*mods)
|
149 |
+
self.layers.append(layer)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
for layer in self.layers:
|
153 |
+
x = x + layer(x)
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class LocalState(nn.Module):
|
158 |
+
"""Local state allows to have attention based only on data (no positional embedding),
|
159 |
+
but while setting a constraint on the time window (e.g. decaying penalty term).
|
160 |
+
|
161 |
+
Also a failed experiments with trying to provide some frequency based attention.
|
162 |
+
"""
|
163 |
+
def __init__(self, channels: int, heads: int = 4, nfreqs: int = 0, ndecay: int = 4):
|
164 |
+
super().__init__()
|
165 |
+
assert channels % heads == 0, (channels, heads)
|
166 |
+
self.heads = heads
|
167 |
+
self.nfreqs = nfreqs
|
168 |
+
self.ndecay = ndecay
|
169 |
+
self.content = nn.Conv1d(channels, channels, 1)
|
170 |
+
self.query = nn.Conv1d(channels, channels, 1)
|
171 |
+
self.key = nn.Conv1d(channels, channels, 1)
|
172 |
+
if nfreqs:
|
173 |
+
self.query_freqs = nn.Conv1d(channels, heads * nfreqs, 1)
|
174 |
+
if ndecay:
|
175 |
+
self.query_decay = nn.Conv1d(channels, heads * ndecay, 1)
|
176 |
+
# Initialize decay close to zero (there is a sigmoid), for maximum initial window.
|
177 |
+
self.query_decay.weight.data *= 0.01
|
178 |
+
assert self.query_decay.bias is not None # stupid type checker
|
179 |
+
self.query_decay.bias.data[:] = -2
|
180 |
+
self.proj = nn.Conv1d(channels + heads * nfreqs, channels, 1)
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
B, C, T = x.shape
|
184 |
+
heads = self.heads
|
185 |
+
indexes = torch.arange(T, device=x.device, dtype=x.dtype)
|
186 |
+
# left index are keys, right index are queries
|
187 |
+
delta = indexes[:, None] - indexes[None, :]
|
188 |
+
|
189 |
+
queries = self.query(x).view(B, heads, -1, T)
|
190 |
+
keys = self.key(x).view(B, heads, -1, T)
|
191 |
+
# t are keys, s are queries
|
192 |
+
dots = torch.einsum("bhct,bhcs->bhts", keys, queries)
|
193 |
+
dots /= keys.shape[2]**0.5
|
194 |
+
if self.nfreqs:
|
195 |
+
periods = torch.arange(1, self.nfreqs + 1, device=x.device, dtype=x.dtype)
|
196 |
+
freq_kernel = torch.cos(2 * math.pi * delta / periods.view(-1, 1, 1))
|
197 |
+
freq_q = self.query_freqs(x).view(B, heads, -1, T) / self.nfreqs ** 0.5
|
198 |
+
dots += torch.einsum("fts,bhfs->bhts", freq_kernel, freq_q)
|
199 |
+
if self.ndecay:
|
200 |
+
decays = torch.arange(1, self.ndecay + 1, device=x.device, dtype=x.dtype)
|
201 |
+
decay_q = self.query_decay(x).view(B, heads, -1, T)
|
202 |
+
decay_q = torch.sigmoid(decay_q) / 2
|
203 |
+
decay_kernel = - decays.view(-1, 1, 1) * delta.abs() / self.ndecay**0.5
|
204 |
+
dots += torch.einsum("fts,bhfs->bhts", decay_kernel, decay_q)
|
205 |
+
|
206 |
+
# Kill self reference.
|
207 |
+
dots.masked_fill_(torch.eye(T, device=dots.device, dtype=torch.bool), -100)
|
208 |
+
weights = torch.softmax(dots, dim=2)
|
209 |
+
|
210 |
+
content = self.content(x).view(B, heads, -1, T)
|
211 |
+
result = torch.einsum("bhts,bhct->bhcs", weights, content)
|
212 |
+
if self.nfreqs:
|
213 |
+
time_sig = torch.einsum("bhts,fts->bhfs", weights, freq_kernel)
|
214 |
+
result = torch.cat([result, time_sig], 2)
|
215 |
+
result = result.reshape(B, -1, T)
|
216 |
+
return x + self.proj(result)
|
217 |
+
|
218 |
+
|
219 |
+
class Demucs(nn.Module):
|
220 |
+
@capture_init
|
221 |
+
def __init__(self,
|
222 |
+
sources,
|
223 |
+
# Channels
|
224 |
+
audio_channels=2,
|
225 |
+
channels=64,
|
226 |
+
growth=2.,
|
227 |
+
# Main structure
|
228 |
+
depth=6,
|
229 |
+
rewrite=True,
|
230 |
+
lstm_layers=0,
|
231 |
+
# Convolutions
|
232 |
+
kernel_size=8,
|
233 |
+
stride=4,
|
234 |
+
context=1,
|
235 |
+
# Activations
|
236 |
+
gelu=True,
|
237 |
+
glu=True,
|
238 |
+
# Normalization
|
239 |
+
norm_starts=4,
|
240 |
+
norm_groups=4,
|
241 |
+
# DConv residual branch
|
242 |
+
dconv_mode=1,
|
243 |
+
dconv_depth=2,
|
244 |
+
dconv_comp=4,
|
245 |
+
dconv_attn=4,
|
246 |
+
dconv_lstm=4,
|
247 |
+
dconv_init=1e-4,
|
248 |
+
# Pre/post processing
|
249 |
+
normalize=True,
|
250 |
+
resample=True,
|
251 |
+
# Weight init
|
252 |
+
rescale=0.1,
|
253 |
+
# Metadata
|
254 |
+
samplerate=44100,
|
255 |
+
segment=4 * 10):
|
256 |
+
"""
|
257 |
+
Args:
|
258 |
+
sources (list[str]): list of source names
|
259 |
+
audio_channels (int): stereo or mono
|
260 |
+
channels (int): first convolution channels
|
261 |
+
depth (int): number of encoder/decoder layers
|
262 |
+
growth (float): multiply (resp divide) number of channels by that
|
263 |
+
for each layer of the encoder (resp decoder)
|
264 |
+
depth (int): number of layers in the encoder and in the decoder.
|
265 |
+
rewrite (bool): add 1x1 convolution to each layer.
|
266 |
+
lstm_layers (int): number of lstm layers, 0 = no lstm. Deactivated
|
267 |
+
by default, as this is now replaced by the smaller and faster small LSTMs
|
268 |
+
in the DConv branches.
|
269 |
+
kernel_size (int): kernel size for convolutions
|
270 |
+
stride (int): stride for convolutions
|
271 |
+
context (int): kernel size of the convolution in the
|
272 |
+
decoder before the transposed convolution. If > 1,
|
273 |
+
will provide some context from neighboring time steps.
|
274 |
+
gelu: use GELU activation function.
|
275 |
+
glu (bool): use glu instead of ReLU for the 1x1 rewrite conv.
|
276 |
+
norm_starts: layer at which group norm starts being used.
|
277 |
+
decoder layers are numbered in reverse order.
|
278 |
+
norm_groups: number of groups for group norm.
|
279 |
+
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
280 |
+
dconv_depth: depth of residual DConv branch.
|
281 |
+
dconv_comp: compression of DConv branch.
|
282 |
+
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
283 |
+
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
284 |
+
dconv_init: initial scale for the DConv branch LayerScale.
|
285 |
+
normalize (bool): normalizes the input audio on the fly, and scales back
|
286 |
+
the output by the same amount.
|
287 |
+
resample (bool): upsample x2 the input and downsample /2 the output.
|
288 |
+
rescale (int): rescale initial weights of convolutions
|
289 |
+
to get their standard deviation closer to `rescale`.
|
290 |
+
samplerate (int): stored as meta information for easing
|
291 |
+
future evaluations of the model.
|
292 |
+
segment (float): duration of the chunks of audio to ideally evaluate the model on.
|
293 |
+
This is used by `demucs.apply.apply_model`.
|
294 |
+
"""
|
295 |
+
|
296 |
+
super().__init__()
|
297 |
+
self.audio_channels = audio_channels
|
298 |
+
self.sources = sources
|
299 |
+
self.kernel_size = kernel_size
|
300 |
+
self.context = context
|
301 |
+
self.stride = stride
|
302 |
+
self.depth = depth
|
303 |
+
self.resample = resample
|
304 |
+
self.channels = channels
|
305 |
+
self.normalize = normalize
|
306 |
+
self.samplerate = samplerate
|
307 |
+
self.segment = segment
|
308 |
+
self.encoder = nn.ModuleList()
|
309 |
+
self.decoder = nn.ModuleList()
|
310 |
+
self.skip_scales = nn.ModuleList()
|
311 |
+
|
312 |
+
if glu:
|
313 |
+
activation = nn.GLU(dim=1)
|
314 |
+
ch_scale = 2
|
315 |
+
else:
|
316 |
+
activation = nn.ReLU()
|
317 |
+
ch_scale = 1
|
318 |
+
if gelu:
|
319 |
+
act2 = nn.GELU
|
320 |
+
else:
|
321 |
+
act2 = nn.ReLU
|
322 |
+
|
323 |
+
in_channels = audio_channels
|
324 |
+
padding = 0
|
325 |
+
for index in range(depth):
|
326 |
+
norm_fn = lambda d: nn.Identity() # noqa
|
327 |
+
if index >= norm_starts:
|
328 |
+
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
329 |
+
|
330 |
+
encode = []
|
331 |
+
encode += [
|
332 |
+
nn.Conv1d(in_channels, channels, kernel_size, stride),
|
333 |
+
norm_fn(channels),
|
334 |
+
act2(),
|
335 |
+
]
|
336 |
+
attn = index >= dconv_attn
|
337 |
+
lstm = index >= dconv_lstm
|
338 |
+
if dconv_mode & 1:
|
339 |
+
encode += [DConv(channels, depth=dconv_depth, init=dconv_init,
|
340 |
+
compress=dconv_comp, attn=attn, lstm=lstm)]
|
341 |
+
if rewrite:
|
342 |
+
encode += [
|
343 |
+
nn.Conv1d(channels, ch_scale * channels, 1),
|
344 |
+
norm_fn(ch_scale * channels), activation]
|
345 |
+
self.encoder.append(nn.Sequential(*encode))
|
346 |
+
|
347 |
+
decode = []
|
348 |
+
if index > 0:
|
349 |
+
out_channels = in_channels
|
350 |
+
else:
|
351 |
+
out_channels = len(self.sources) * audio_channels
|
352 |
+
if rewrite:
|
353 |
+
decode += [
|
354 |
+
nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context),
|
355 |
+
norm_fn(ch_scale * channels), activation]
|
356 |
+
if dconv_mode & 2:
|
357 |
+
decode += [DConv(channels, depth=dconv_depth, init=dconv_init,
|
358 |
+
compress=dconv_comp, attn=attn, lstm=lstm)]
|
359 |
+
decode += [nn.ConvTranspose1d(channels, out_channels,
|
360 |
+
kernel_size, stride, padding=padding)]
|
361 |
+
if index > 0:
|
362 |
+
decode += [norm_fn(out_channels), act2()]
|
363 |
+
self.decoder.insert(0, nn.Sequential(*decode))
|
364 |
+
in_channels = channels
|
365 |
+
channels = int(growth * channels)
|
366 |
+
|
367 |
+
channels = in_channels
|
368 |
+
if lstm_layers:
|
369 |
+
self.lstm = BLSTM(channels, lstm_layers)
|
370 |
+
else:
|
371 |
+
self.lstm = None
|
372 |
+
|
373 |
+
if rescale:
|
374 |
+
rescale_module(self, reference=rescale)
|
375 |
+
|
376 |
+
def valid_length(self, length):
|
377 |
+
"""
|
378 |
+
Return the nearest valid length to use with the model so that
|
379 |
+
there is no time steps left over in a convolution, e.g. for all
|
380 |
+
layers, size of the input - kernel_size % stride = 0.
|
381 |
+
|
382 |
+
Note that input are automatically padded if necessary to ensure that the output
|
383 |
+
has the same length as the input.
|
384 |
+
"""
|
385 |
+
if self.resample:
|
386 |
+
length *= 2
|
387 |
+
|
388 |
+
for _ in range(self.depth):
|
389 |
+
length = math.ceil((length - self.kernel_size) / self.stride) + 1
|
390 |
+
length = max(1, length)
|
391 |
+
|
392 |
+
for idx in range(self.depth):
|
393 |
+
length = (length - 1) * self.stride + self.kernel_size
|
394 |
+
|
395 |
+
if self.resample:
|
396 |
+
length = math.ceil(length / 2)
|
397 |
+
return int(length)
|
398 |
+
|
399 |
+
def forward(self, mix):
|
400 |
+
x = mix
|
401 |
+
length = x.shape[-1]
|
402 |
+
|
403 |
+
if self.normalize:
|
404 |
+
mono = mix.mean(dim=1, keepdim=True)
|
405 |
+
mean = mono.mean(dim=-1, keepdim=True)
|
406 |
+
std = mono.std(dim=-1, keepdim=True)
|
407 |
+
x = (x - mean) / (1e-5 + std)
|
408 |
+
else:
|
409 |
+
mean = 0
|
410 |
+
std = 1
|
411 |
+
|
412 |
+
delta = self.valid_length(length) - length
|
413 |
+
x = F.pad(x, (delta // 2, delta - delta // 2))
|
414 |
+
|
415 |
+
if self.resample:
|
416 |
+
x = julius.resample_frac(x, 1, 2)
|
417 |
+
|
418 |
+
saved = []
|
419 |
+
for encode in self.encoder:
|
420 |
+
x = encode(x)
|
421 |
+
saved.append(x)
|
422 |
+
|
423 |
+
if self.lstm:
|
424 |
+
x = self.lstm(x)
|
425 |
+
|
426 |
+
for decode in self.decoder:
|
427 |
+
skip = saved.pop(-1)
|
428 |
+
skip = center_trim(skip, x)
|
429 |
+
x = decode(x + skip)
|
430 |
+
|
431 |
+
if self.resample:
|
432 |
+
x = julius.resample_frac(x, 2, 1)
|
433 |
+
x = x * std + mean
|
434 |
+
x = center_trim(x, length)
|
435 |
+
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1))
|
436 |
+
return x
|
437 |
+
|
438 |
+
def load_state_dict(self, state, strict=True):
|
439 |
+
# fix a mismatch with previous generation Demucs models.
|
440 |
+
for idx in range(self.depth):
|
441 |
+
for a in ['encoder', 'decoder']:
|
442 |
+
for b in ['bias', 'weight']:
|
443 |
+
new = f'{a}.{idx}.3.{b}'
|
444 |
+
old = f'{a}.{idx}.2.{b}'
|
445 |
+
if old in state and new not in state:
|
446 |
+
state[new] = state.pop(old)
|
447 |
+
super().load_state_dict(state, strict=strict)
|
demucs4/hdemucs.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""
|
7 |
+
This code contains the spectrogram and Hybrid version of Demucs.
|
8 |
+
"""
|
9 |
+
from copy import deepcopy
|
10 |
+
import math
|
11 |
+
import typing as tp
|
12 |
+
|
13 |
+
from openunmix.filtering import wiener
|
14 |
+
import torch
|
15 |
+
from torch import nn
|
16 |
+
from torch.nn import functional as F
|
17 |
+
|
18 |
+
from .demucs import DConv, rescale_module
|
19 |
+
from .states import capture_init
|
20 |
+
from .spec import spectro, ispectro
|
21 |
+
|
22 |
+
|
23 |
+
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
|
24 |
+
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
25 |
+
If this is the case, we insert extra 0 padding to the right before the reflection happen."""
|
26 |
+
x0 = x
|
27 |
+
length = x.shape[-1]
|
28 |
+
padding_left, padding_right = paddings
|
29 |
+
if mode == 'reflect':
|
30 |
+
max_pad = max(padding_left, padding_right)
|
31 |
+
if length <= max_pad:
|
32 |
+
extra_pad = max_pad - length + 1
|
33 |
+
extra_pad_right = min(padding_right, extra_pad)
|
34 |
+
extra_pad_left = extra_pad - extra_pad_right
|
35 |
+
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right)
|
36 |
+
x = F.pad(x, (extra_pad_left, extra_pad_right))
|
37 |
+
out = F.pad(x, paddings, mode, value)
|
38 |
+
assert out.shape[-1] == length + padding_left + padding_right
|
39 |
+
assert (out[..., padding_left: padding_left + length] == x0).all()
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
class ScaledEmbedding(nn.Module):
|
44 |
+
"""
|
45 |
+
Boost learning rate for embeddings (with `scale`).
|
46 |
+
Also, can make embeddings continuous with `smooth`.
|
47 |
+
"""
|
48 |
+
def __init__(self, num_embeddings: int, embedding_dim: int,
|
49 |
+
scale: float = 10., smooth=False):
|
50 |
+
super().__init__()
|
51 |
+
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
52 |
+
if smooth:
|
53 |
+
weight = torch.cumsum(self.embedding.weight.data, dim=0)
|
54 |
+
# when summing gaussian, overscale raises as sqrt(n), so we nornalize by that.
|
55 |
+
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None]
|
56 |
+
self.embedding.weight.data[:] = weight
|
57 |
+
self.embedding.weight.data /= scale
|
58 |
+
self.scale = scale
|
59 |
+
|
60 |
+
@property
|
61 |
+
def weight(self):
|
62 |
+
return self.embedding.weight * self.scale
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
out = self.embedding(x) * self.scale
|
66 |
+
return out
|
67 |
+
|
68 |
+
|
69 |
+
class HEncLayer(nn.Module):
|
70 |
+
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False,
|
71 |
+
freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True,
|
72 |
+
rewrite=True):
|
73 |
+
"""Encoder layer. This used both by the time and the frequency branch.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
chin: number of input channels.
|
77 |
+
chout: number of output channels.
|
78 |
+
norm_groups: number of groups for group norm.
|
79 |
+
empty: used to make a layer with just the first conv. this is used
|
80 |
+
before merging the time and freq. branches.
|
81 |
+
freq: this is acting on frequencies.
|
82 |
+
dconv: insert DConv residual branches.
|
83 |
+
norm: use GroupNorm.
|
84 |
+
context: context size for the 1x1 conv.
|
85 |
+
dconv_kw: list of kwargs for the DConv class.
|
86 |
+
pad: pad the input. Padding is done so that the output size is
|
87 |
+
always the input size / stride.
|
88 |
+
rewrite: add 1x1 conv at the end of the layer.
|
89 |
+
"""
|
90 |
+
super().__init__()
|
91 |
+
norm_fn = lambda d: nn.Identity() # noqa
|
92 |
+
if norm:
|
93 |
+
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
94 |
+
if pad:
|
95 |
+
pad = kernel_size // 4
|
96 |
+
else:
|
97 |
+
pad = 0
|
98 |
+
klass = nn.Conv1d
|
99 |
+
self.freq = freq
|
100 |
+
self.kernel_size = kernel_size
|
101 |
+
self.stride = stride
|
102 |
+
self.empty = empty
|
103 |
+
self.norm = norm
|
104 |
+
self.pad = pad
|
105 |
+
if freq:
|
106 |
+
kernel_size = [kernel_size, 1]
|
107 |
+
stride = [stride, 1]
|
108 |
+
pad = [pad, 0]
|
109 |
+
klass = nn.Conv2d
|
110 |
+
self.conv = klass(chin, chout, kernel_size, stride, pad)
|
111 |
+
if self.empty:
|
112 |
+
return
|
113 |
+
self.norm1 = norm_fn(chout)
|
114 |
+
self.rewrite = None
|
115 |
+
if rewrite:
|
116 |
+
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context)
|
117 |
+
self.norm2 = norm_fn(2 * chout)
|
118 |
+
|
119 |
+
self.dconv = None
|
120 |
+
if dconv:
|
121 |
+
self.dconv = DConv(chout, **dconv_kw)
|
122 |
+
|
123 |
+
def forward(self, x, inject=None):
|
124 |
+
"""
|
125 |
+
`inject` is used to inject the result from the time branch into the frequency branch,
|
126 |
+
when both have the same stride.
|
127 |
+
"""
|
128 |
+
if not self.freq and x.dim() == 4:
|
129 |
+
B, C, Fr, T = x.shape
|
130 |
+
x = x.view(B, -1, T)
|
131 |
+
|
132 |
+
if not self.freq:
|
133 |
+
le = x.shape[-1]
|
134 |
+
if not le % self.stride == 0:
|
135 |
+
x = F.pad(x, (0, self.stride - (le % self.stride)))
|
136 |
+
y = self.conv(x)
|
137 |
+
if self.empty:
|
138 |
+
return y
|
139 |
+
if inject is not None:
|
140 |
+
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape)
|
141 |
+
if inject.dim() == 3 and y.dim() == 4:
|
142 |
+
inject = inject[:, :, None]
|
143 |
+
y = y + inject
|
144 |
+
y = F.gelu(self.norm1(y))
|
145 |
+
if self.dconv:
|
146 |
+
if self.freq:
|
147 |
+
B, C, Fr, T = y.shape
|
148 |
+
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
|
149 |
+
y = self.dconv(y)
|
150 |
+
if self.freq:
|
151 |
+
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
|
152 |
+
if self.rewrite:
|
153 |
+
z = self.norm2(self.rewrite(y))
|
154 |
+
z = F.glu(z, dim=1)
|
155 |
+
else:
|
156 |
+
z = y
|
157 |
+
return z
|
158 |
+
|
159 |
+
|
160 |
+
class MultiWrap(nn.Module):
|
161 |
+
"""
|
162 |
+
Takes one layer and replicate it N times. each replica will act
|
163 |
+
on a frequency band. All is done so that if the N replica have the same weights,
|
164 |
+
then this is exactly equivalent to applying the original module on all frequencies.
|
165 |
+
|
166 |
+
This is a bit over-engineered to avoid edge artifacts when splitting
|
167 |
+
the frequency bands, but it is possible the naive implementation would work as well...
|
168 |
+
"""
|
169 |
+
def __init__(self, layer, split_ratios):
|
170 |
+
"""
|
171 |
+
Args:
|
172 |
+
layer: module to clone, must be either HEncLayer or HDecLayer.
|
173 |
+
split_ratios: list of float indicating which ratio to keep for each band.
|
174 |
+
"""
|
175 |
+
super().__init__()
|
176 |
+
self.split_ratios = split_ratios
|
177 |
+
self.layers = nn.ModuleList()
|
178 |
+
self.conv = isinstance(layer, HEncLayer)
|
179 |
+
assert not layer.norm
|
180 |
+
assert layer.freq
|
181 |
+
assert layer.pad
|
182 |
+
if not self.conv:
|
183 |
+
assert not layer.context_freq
|
184 |
+
for k in range(len(split_ratios) + 1):
|
185 |
+
lay = deepcopy(layer)
|
186 |
+
if self.conv:
|
187 |
+
lay.conv.padding = (0, 0)
|
188 |
+
else:
|
189 |
+
lay.pad = False
|
190 |
+
for m in lay.modules():
|
191 |
+
if hasattr(m, 'reset_parameters'):
|
192 |
+
m.reset_parameters()
|
193 |
+
self.layers.append(lay)
|
194 |
+
|
195 |
+
def forward(self, x, skip=None, length=None):
|
196 |
+
B, C, Fr, T = x.shape
|
197 |
+
|
198 |
+
ratios = list(self.split_ratios) + [1]
|
199 |
+
start = 0
|
200 |
+
outs = []
|
201 |
+
for ratio, layer in zip(ratios, self.layers):
|
202 |
+
if self.conv:
|
203 |
+
pad = layer.kernel_size // 4
|
204 |
+
if ratio == 1:
|
205 |
+
limit = Fr
|
206 |
+
frames = -1
|
207 |
+
else:
|
208 |
+
limit = int(round(Fr * ratio))
|
209 |
+
le = limit - start
|
210 |
+
if start == 0:
|
211 |
+
le += pad
|
212 |
+
frames = round((le - layer.kernel_size) / layer.stride + 1)
|
213 |
+
limit = start + (frames - 1) * layer.stride + layer.kernel_size
|
214 |
+
if start == 0:
|
215 |
+
limit -= pad
|
216 |
+
assert limit - start > 0, (limit, start)
|
217 |
+
assert limit <= Fr, (limit, Fr)
|
218 |
+
y = x[:, :, start:limit, :]
|
219 |
+
if start == 0:
|
220 |
+
y = F.pad(y, (0, 0, pad, 0))
|
221 |
+
if ratio == 1:
|
222 |
+
y = F.pad(y, (0, 0, 0, pad))
|
223 |
+
outs.append(layer(y))
|
224 |
+
start = limit - layer.kernel_size + layer.stride
|
225 |
+
else:
|
226 |
+
if ratio == 1:
|
227 |
+
limit = Fr
|
228 |
+
else:
|
229 |
+
limit = int(round(Fr * ratio))
|
230 |
+
last = layer.last
|
231 |
+
layer.last = True
|
232 |
+
|
233 |
+
y = x[:, :, start:limit]
|
234 |
+
s = skip[:, :, start:limit]
|
235 |
+
out, _ = layer(y, s, None)
|
236 |
+
if outs:
|
237 |
+
outs[-1][:, :, -layer.stride:] += (
|
238 |
+
out[:, :, :layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1))
|
239 |
+
out = out[:, :, layer.stride:]
|
240 |
+
if ratio == 1:
|
241 |
+
out = out[:, :, :-layer.stride // 2, :]
|
242 |
+
if start == 0:
|
243 |
+
out = out[:, :, layer.stride // 2:, :]
|
244 |
+
outs.append(out)
|
245 |
+
layer.last = last
|
246 |
+
start = limit
|
247 |
+
out = torch.cat(outs, dim=2)
|
248 |
+
if not self.conv and not last:
|
249 |
+
out = F.gelu(out)
|
250 |
+
if self.conv:
|
251 |
+
return out
|
252 |
+
else:
|
253 |
+
return out, None
|
254 |
+
|
255 |
+
|
256 |
+
class HDecLayer(nn.Module):
|
257 |
+
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False,
|
258 |
+
freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True,
|
259 |
+
context_freq=True, rewrite=True):
|
260 |
+
"""
|
261 |
+
Same as HEncLayer but for decoder. See `HEncLayer` for documentation.
|
262 |
+
"""
|
263 |
+
super().__init__()
|
264 |
+
norm_fn = lambda d: nn.Identity() # noqa
|
265 |
+
if norm:
|
266 |
+
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
267 |
+
if pad:
|
268 |
+
pad = kernel_size // 4
|
269 |
+
else:
|
270 |
+
pad = 0
|
271 |
+
self.pad = pad
|
272 |
+
self.last = last
|
273 |
+
self.freq = freq
|
274 |
+
self.chin = chin
|
275 |
+
self.empty = empty
|
276 |
+
self.stride = stride
|
277 |
+
self.kernel_size = kernel_size
|
278 |
+
self.norm = norm
|
279 |
+
self.context_freq = context_freq
|
280 |
+
klass = nn.Conv1d
|
281 |
+
klass_tr = nn.ConvTranspose1d
|
282 |
+
if freq:
|
283 |
+
kernel_size = [kernel_size, 1]
|
284 |
+
stride = [stride, 1]
|
285 |
+
klass = nn.Conv2d
|
286 |
+
klass_tr = nn.ConvTranspose2d
|
287 |
+
self.conv_tr = klass_tr(chin, chout, kernel_size, stride)
|
288 |
+
self.norm2 = norm_fn(chout)
|
289 |
+
if self.empty:
|
290 |
+
return
|
291 |
+
self.rewrite = None
|
292 |
+
if rewrite:
|
293 |
+
if context_freq:
|
294 |
+
self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context)
|
295 |
+
else:
|
296 |
+
self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1,
|
297 |
+
[0, context])
|
298 |
+
self.norm1 = norm_fn(2 * chin)
|
299 |
+
|
300 |
+
self.dconv = None
|
301 |
+
if dconv:
|
302 |
+
self.dconv = DConv(chin, **dconv_kw)
|
303 |
+
|
304 |
+
def forward(self, x, skip, length):
|
305 |
+
if self.freq and x.dim() == 3:
|
306 |
+
B, C, T = x.shape
|
307 |
+
x = x.view(B, self.chin, -1, T)
|
308 |
+
|
309 |
+
if not self.empty:
|
310 |
+
x = x + skip
|
311 |
+
|
312 |
+
if self.rewrite:
|
313 |
+
y = F.glu(self.norm1(self.rewrite(x)), dim=1)
|
314 |
+
else:
|
315 |
+
y = x
|
316 |
+
if self.dconv:
|
317 |
+
if self.freq:
|
318 |
+
B, C, Fr, T = y.shape
|
319 |
+
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
|
320 |
+
y = self.dconv(y)
|
321 |
+
if self.freq:
|
322 |
+
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
|
323 |
+
else:
|
324 |
+
y = x
|
325 |
+
assert skip is None
|
326 |
+
z = self.norm2(self.conv_tr(y))
|
327 |
+
if self.freq:
|
328 |
+
if self.pad:
|
329 |
+
z = z[..., self.pad:-self.pad, :]
|
330 |
+
else:
|
331 |
+
z = z[..., self.pad:self.pad + length]
|
332 |
+
assert z.shape[-1] == length, (z.shape[-1], length)
|
333 |
+
if not self.last:
|
334 |
+
z = F.gelu(z)
|
335 |
+
return z, y
|
336 |
+
|
337 |
+
|
338 |
+
class HDemucs(nn.Module):
|
339 |
+
"""
|
340 |
+
Spectrogram and hybrid Demucs model.
|
341 |
+
The spectrogram model has the same structure as Demucs, except the first few layers are over the
|
342 |
+
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
|
343 |
+
Frequency layers can still access information across time steps thanks to the DConv residual.
|
344 |
+
|
345 |
+
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
|
346 |
+
as the frequency branch and then the two are combined. The opposite happens in the decoder.
|
347 |
+
|
348 |
+
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
|
349 |
+
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
|
350 |
+
Open Unmix implementation [Stoter et al. 2019].
|
351 |
+
|
352 |
+
The loss is always on the temporal domain, by backpropagating through the above
|
353 |
+
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
|
354 |
+
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
|
355 |
+
contribution, without changing the one from the waveform, which will lead to worse performance.
|
356 |
+
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
|
357 |
+
CaC on the other hand provides similar performance for hybrid, and works naturally with
|
358 |
+
hybrid models.
|
359 |
+
|
360 |
+
This model also uses frequency embeddings are used to improve efficiency on convolutions
|
361 |
+
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
|
362 |
+
|
363 |
+
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
|
364 |
+
"""
|
365 |
+
@capture_init
|
366 |
+
def __init__(self,
|
367 |
+
sources,
|
368 |
+
# Channels
|
369 |
+
audio_channels=2,
|
370 |
+
channels=48,
|
371 |
+
channels_time=None,
|
372 |
+
growth=2,
|
373 |
+
# STFT
|
374 |
+
nfft=4096,
|
375 |
+
wiener_iters=0,
|
376 |
+
end_iters=0,
|
377 |
+
wiener_residual=False,
|
378 |
+
cac=True,
|
379 |
+
# Main structure
|
380 |
+
depth=6,
|
381 |
+
rewrite=True,
|
382 |
+
hybrid=True,
|
383 |
+
hybrid_old=False,
|
384 |
+
# Frequency branch
|
385 |
+
multi_freqs=None,
|
386 |
+
multi_freqs_depth=2,
|
387 |
+
freq_emb=0.2,
|
388 |
+
emb_scale=10,
|
389 |
+
emb_smooth=True,
|
390 |
+
# Convolutions
|
391 |
+
kernel_size=8,
|
392 |
+
time_stride=2,
|
393 |
+
stride=4,
|
394 |
+
context=1,
|
395 |
+
context_enc=0,
|
396 |
+
# Normalization
|
397 |
+
norm_starts=4,
|
398 |
+
norm_groups=4,
|
399 |
+
# DConv residual branch
|
400 |
+
dconv_mode=1,
|
401 |
+
dconv_depth=2,
|
402 |
+
dconv_comp=4,
|
403 |
+
dconv_attn=4,
|
404 |
+
dconv_lstm=4,
|
405 |
+
dconv_init=1e-4,
|
406 |
+
# Weight init
|
407 |
+
rescale=0.1,
|
408 |
+
# Metadata
|
409 |
+
samplerate=44100,
|
410 |
+
segment=4 * 10):
|
411 |
+
"""
|
412 |
+
Args:
|
413 |
+
sources (list[str]): list of source names.
|
414 |
+
audio_channels (int): input/output audio channels.
|
415 |
+
channels (int): initial number of hidden channels.
|
416 |
+
channels_time: if not None, use a different `channels` value for the time branch.
|
417 |
+
growth: increase the number of hidden channels by this factor at each layer.
|
418 |
+
nfft: number of fft bins. Note that changing this require careful computation of
|
419 |
+
various shape parameters and will not work out of the box for hybrid models.
|
420 |
+
wiener_iters: when using Wiener filtering, number of iterations at test time.
|
421 |
+
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
|
422 |
+
wiener_residual: add residual source before wiener filtering.
|
423 |
+
cac: uses complex as channels, i.e. complex numbers are 2 channels each
|
424 |
+
in input and output. no further processing is done before ISTFT.
|
425 |
+
depth (int): number of layers in the encoder and in the decoder.
|
426 |
+
rewrite (bool): add 1x1 convolution to each layer.
|
427 |
+
hybrid (bool): make a hybrid time/frequency domain, otherwise frequency only.
|
428 |
+
hybrid_old: some models trained for MDX had a padding bug. This replicates
|
429 |
+
this bug to avoid retraining them.
|
430 |
+
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
|
431 |
+
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
|
432 |
+
layers will be wrapped.
|
433 |
+
freq_emb: add frequency embedding after the first frequency layer if > 0,
|
434 |
+
the actual value controls the weight of the embedding.
|
435 |
+
emb_scale: equivalent to scaling the embedding learning rate
|
436 |
+
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
|
437 |
+
kernel_size: kernel_size for encoder and decoder layers.
|
438 |
+
stride: stride for encoder and decoder layers.
|
439 |
+
time_stride: stride for the final time layer, after the merge.
|
440 |
+
context: context for 1x1 conv in the decoder.
|
441 |
+
context_enc: context for 1x1 conv in the encoder.
|
442 |
+
norm_starts: layer at which group norm starts being used.
|
443 |
+
decoder layers are numbered in reverse order.
|
444 |
+
norm_groups: number of groups for group norm.
|
445 |
+
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
446 |
+
dconv_depth: depth of residual DConv branch.
|
447 |
+
dconv_comp: compression of DConv branch.
|
448 |
+
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
449 |
+
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
450 |
+
dconv_init: initial scale for the DConv branch LayerScale.
|
451 |
+
rescale: weight recaling trick
|
452 |
+
|
453 |
+
"""
|
454 |
+
super().__init__()
|
455 |
+
self.cac = cac
|
456 |
+
self.wiener_residual = wiener_residual
|
457 |
+
self.audio_channels = audio_channels
|
458 |
+
self.sources = sources
|
459 |
+
self.kernel_size = kernel_size
|
460 |
+
self.context = context
|
461 |
+
self.stride = stride
|
462 |
+
self.depth = depth
|
463 |
+
self.channels = channels
|
464 |
+
self.samplerate = samplerate
|
465 |
+
self.segment = segment
|
466 |
+
|
467 |
+
self.nfft = nfft
|
468 |
+
self.hop_length = nfft // 4
|
469 |
+
self.wiener_iters = wiener_iters
|
470 |
+
self.end_iters = end_iters
|
471 |
+
self.freq_emb = None
|
472 |
+
self.hybrid = hybrid
|
473 |
+
self.hybrid_old = hybrid_old
|
474 |
+
if hybrid_old:
|
475 |
+
assert hybrid, "hybrid_old must come with hybrid=True"
|
476 |
+
if hybrid:
|
477 |
+
assert wiener_iters == end_iters
|
478 |
+
|
479 |
+
self.encoder = nn.ModuleList()
|
480 |
+
self.decoder = nn.ModuleList()
|
481 |
+
|
482 |
+
if hybrid:
|
483 |
+
self.tencoder = nn.ModuleList()
|
484 |
+
self.tdecoder = nn.ModuleList()
|
485 |
+
|
486 |
+
chin = audio_channels
|
487 |
+
chin_z = chin # number of channels for the freq branch
|
488 |
+
if self.cac:
|
489 |
+
chin_z *= 2
|
490 |
+
chout = channels_time or channels
|
491 |
+
chout_z = channels
|
492 |
+
freqs = nfft // 2
|
493 |
+
|
494 |
+
for index in range(depth):
|
495 |
+
lstm = index >= dconv_lstm
|
496 |
+
attn = index >= dconv_attn
|
497 |
+
norm = index >= norm_starts
|
498 |
+
freq = freqs > 1
|
499 |
+
stri = stride
|
500 |
+
ker = kernel_size
|
501 |
+
if not freq:
|
502 |
+
assert freqs == 1
|
503 |
+
ker = time_stride * 2
|
504 |
+
stri = time_stride
|
505 |
+
|
506 |
+
pad = True
|
507 |
+
last_freq = False
|
508 |
+
if freq and freqs <= kernel_size:
|
509 |
+
ker = freqs
|
510 |
+
pad = False
|
511 |
+
last_freq = True
|
512 |
+
|
513 |
+
kw = {
|
514 |
+
'kernel_size': ker,
|
515 |
+
'stride': stri,
|
516 |
+
'freq': freq,
|
517 |
+
'pad': pad,
|
518 |
+
'norm': norm,
|
519 |
+
'rewrite': rewrite,
|
520 |
+
'norm_groups': norm_groups,
|
521 |
+
'dconv_kw': {
|
522 |
+
'lstm': lstm,
|
523 |
+
'attn': attn,
|
524 |
+
'depth': dconv_depth,
|
525 |
+
'compress': dconv_comp,
|
526 |
+
'init': dconv_init,
|
527 |
+
'gelu': True,
|
528 |
+
}
|
529 |
+
}
|
530 |
+
kwt = dict(kw)
|
531 |
+
kwt['freq'] = 0
|
532 |
+
kwt['kernel_size'] = kernel_size
|
533 |
+
kwt['stride'] = stride
|
534 |
+
kwt['pad'] = True
|
535 |
+
kw_dec = dict(kw)
|
536 |
+
multi = False
|
537 |
+
if multi_freqs and index < multi_freqs_depth:
|
538 |
+
multi = True
|
539 |
+
kw_dec['context_freq'] = False
|
540 |
+
|
541 |
+
if last_freq:
|
542 |
+
chout_z = max(chout, chout_z)
|
543 |
+
chout = chout_z
|
544 |
+
|
545 |
+
enc = HEncLayer(chin_z, chout_z,
|
546 |
+
dconv=dconv_mode & 1, context=context_enc, **kw)
|
547 |
+
if hybrid and freq:
|
548 |
+
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc,
|
549 |
+
empty=last_freq, **kwt)
|
550 |
+
self.tencoder.append(tenc)
|
551 |
+
|
552 |
+
if multi:
|
553 |
+
enc = MultiWrap(enc, multi_freqs)
|
554 |
+
self.encoder.append(enc)
|
555 |
+
if index == 0:
|
556 |
+
chin = self.audio_channels * len(self.sources)
|
557 |
+
chin_z = chin
|
558 |
+
if self.cac:
|
559 |
+
chin_z *= 2
|
560 |
+
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2,
|
561 |
+
last=index == 0, context=context, **kw_dec)
|
562 |
+
if multi:
|
563 |
+
dec = MultiWrap(dec, multi_freqs)
|
564 |
+
if hybrid and freq:
|
565 |
+
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq,
|
566 |
+
last=index == 0, context=context, **kwt)
|
567 |
+
self.tdecoder.insert(0, tdec)
|
568 |
+
self.decoder.insert(0, dec)
|
569 |
+
|
570 |
+
chin = chout
|
571 |
+
chin_z = chout_z
|
572 |
+
chout = int(growth * chout)
|
573 |
+
chout_z = int(growth * chout_z)
|
574 |
+
if freq:
|
575 |
+
if freqs <= kernel_size:
|
576 |
+
freqs = 1
|
577 |
+
else:
|
578 |
+
freqs //= stride
|
579 |
+
if index == 0 and freq_emb:
|
580 |
+
self.freq_emb = ScaledEmbedding(
|
581 |
+
freqs, chin_z, smooth=emb_smooth, scale=emb_scale)
|
582 |
+
self.freq_emb_scale = freq_emb
|
583 |
+
|
584 |
+
if rescale:
|
585 |
+
rescale_module(self, reference=rescale)
|
586 |
+
|
587 |
+
def _spec(self, x):
|
588 |
+
hl = self.hop_length
|
589 |
+
nfft = self.nfft
|
590 |
+
x0 = x # noqa
|
591 |
+
|
592 |
+
if self.hybrid:
|
593 |
+
# We re-pad the signal in order to keep the property
|
594 |
+
# that the size of the output is exactly the size of the input
|
595 |
+
# divided by the stride (here hop_length), when divisible.
|
596 |
+
# This is achieved by padding by 1/4th of the kernel size (here nfft).
|
597 |
+
# which is not supported by torch.stft.
|
598 |
+
# Having all convolution operations follow this convention allow to easily
|
599 |
+
# align the time and frequency branches later on.
|
600 |
+
assert hl == nfft // 4
|
601 |
+
le = int(math.ceil(x.shape[-1] / hl))
|
602 |
+
pad = hl // 2 * 3
|
603 |
+
if not self.hybrid_old:
|
604 |
+
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode='reflect')
|
605 |
+
else:
|
606 |
+
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]))
|
607 |
+
|
608 |
+
z = spectro(x, nfft, hl)[..., :-1, :]
|
609 |
+
if self.hybrid:
|
610 |
+
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
|
611 |
+
z = z[..., 2:2+le]
|
612 |
+
return z
|
613 |
+
|
614 |
+
def _ispec(self, z, length=None, scale=0):
|
615 |
+
hl = self.hop_length // (4 ** scale)
|
616 |
+
z = F.pad(z, (0, 0, 0, 1))
|
617 |
+
if self.hybrid:
|
618 |
+
z = F.pad(z, (2, 2))
|
619 |
+
pad = hl // 2 * 3
|
620 |
+
if not self.hybrid_old:
|
621 |
+
le = hl * int(math.ceil(length / hl)) + 2 * pad
|
622 |
+
else:
|
623 |
+
le = hl * int(math.ceil(length / hl))
|
624 |
+
x = ispectro(z, hl, length=le)
|
625 |
+
if not self.hybrid_old:
|
626 |
+
x = x[..., pad:pad + length]
|
627 |
+
else:
|
628 |
+
x = x[..., :length]
|
629 |
+
else:
|
630 |
+
x = ispectro(z, hl, length)
|
631 |
+
return x
|
632 |
+
|
633 |
+
def _magnitude(self, z):
|
634 |
+
# return the magnitude of the spectrogram, except when cac is True,
|
635 |
+
# in which case we just move the complex dimension to the channel one.
|
636 |
+
if self.cac:
|
637 |
+
B, C, Fr, T = z.shape
|
638 |
+
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
|
639 |
+
m = m.reshape(B, C * 2, Fr, T)
|
640 |
+
else:
|
641 |
+
m = z.abs()
|
642 |
+
return m
|
643 |
+
|
644 |
+
def _mask(self, z, m):
|
645 |
+
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
|
646 |
+
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
|
647 |
+
niters = self.wiener_iters
|
648 |
+
if self.cac:
|
649 |
+
B, S, C, Fr, T = m.shape
|
650 |
+
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
|
651 |
+
out = torch.view_as_complex(out.contiguous())
|
652 |
+
return out
|
653 |
+
if self.training:
|
654 |
+
niters = self.end_iters
|
655 |
+
if niters < 0:
|
656 |
+
z = z[:, None]
|
657 |
+
return z / (1e-8 + z.abs()) * m
|
658 |
+
else:
|
659 |
+
return self._wiener(m, z, niters)
|
660 |
+
|
661 |
+
def _wiener(self, mag_out, mix_stft, niters):
|
662 |
+
# apply wiener filtering from OpenUnmix.
|
663 |
+
init = mix_stft.dtype
|
664 |
+
wiener_win_len = 300
|
665 |
+
residual = self.wiener_residual
|
666 |
+
|
667 |
+
B, S, C, Fq, T = mag_out.shape
|
668 |
+
mag_out = mag_out.permute(0, 4, 3, 2, 1)
|
669 |
+
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
|
670 |
+
|
671 |
+
outs = []
|
672 |
+
for sample in range(B):
|
673 |
+
pos = 0
|
674 |
+
out = []
|
675 |
+
for pos in range(0, T, wiener_win_len):
|
676 |
+
frame = slice(pos, pos + wiener_win_len)
|
677 |
+
z_out = wiener(
|
678 |
+
mag_out[sample, frame], mix_stft[sample, frame], niters,
|
679 |
+
residual=residual)
|
680 |
+
out.append(z_out.transpose(-1, -2))
|
681 |
+
outs.append(torch.cat(out, dim=0))
|
682 |
+
out = torch.view_as_complex(torch.stack(outs, 0))
|
683 |
+
out = out.permute(0, 4, 3, 2, 1).contiguous()
|
684 |
+
if residual:
|
685 |
+
out = out[:, :-1]
|
686 |
+
assert list(out.shape) == [B, S, C, Fq, T]
|
687 |
+
return out.to(init)
|
688 |
+
|
689 |
+
def forward(self, mix):
|
690 |
+
x = mix
|
691 |
+
length = x.shape[-1]
|
692 |
+
|
693 |
+
z = self._spec(mix)
|
694 |
+
mag = self._magnitude(z)
|
695 |
+
x = mag
|
696 |
+
|
697 |
+
B, C, Fq, T = x.shape
|
698 |
+
|
699 |
+
# unlike previous Demucs, we always normalize because it is easier.
|
700 |
+
mean = x.mean(dim=(1, 2, 3), keepdim=True)
|
701 |
+
std = x.std(dim=(1, 2, 3), keepdim=True)
|
702 |
+
x = (x - mean) / (1e-5 + std)
|
703 |
+
# x will be the freq. branch input.
|
704 |
+
|
705 |
+
if self.hybrid:
|
706 |
+
# Prepare the time branch input.
|
707 |
+
xt = mix
|
708 |
+
meant = xt.mean(dim=(1, 2), keepdim=True)
|
709 |
+
stdt = xt.std(dim=(1, 2), keepdim=True)
|
710 |
+
xt = (xt - meant) / (1e-5 + stdt)
|
711 |
+
|
712 |
+
# okay, this is a giant mess I know...
|
713 |
+
saved = [] # skip connections, freq.
|
714 |
+
saved_t = [] # skip connections, time.
|
715 |
+
lengths = [] # saved lengths to properly remove padding, freq branch.
|
716 |
+
lengths_t = [] # saved lengths for time branch.
|
717 |
+
for idx, encode in enumerate(self.encoder):
|
718 |
+
lengths.append(x.shape[-1])
|
719 |
+
inject = None
|
720 |
+
if self.hybrid and idx < len(self.tencoder):
|
721 |
+
# we have not yet merged branches.
|
722 |
+
lengths_t.append(xt.shape[-1])
|
723 |
+
tenc = self.tencoder[idx]
|
724 |
+
xt = tenc(xt)
|
725 |
+
if not tenc.empty:
|
726 |
+
# save for skip connection
|
727 |
+
saved_t.append(xt)
|
728 |
+
else:
|
729 |
+
# tenc contains just the first conv., so that now time and freq.
|
730 |
+
# branches have the same shape and can be merged.
|
731 |
+
inject = xt
|
732 |
+
x = encode(x, inject)
|
733 |
+
if idx == 0 and self.freq_emb is not None:
|
734 |
+
# add frequency embedding to allow for non equivariant convolutions
|
735 |
+
# over the frequency axis.
|
736 |
+
frs = torch.arange(x.shape[-2], device=x.device)
|
737 |
+
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
|
738 |
+
x = x + self.freq_emb_scale * emb
|
739 |
+
|
740 |
+
saved.append(x)
|
741 |
+
|
742 |
+
x = torch.zeros_like(x)
|
743 |
+
if self.hybrid:
|
744 |
+
xt = torch.zeros_like(x)
|
745 |
+
# initialize everything to zero (signal will go through u-net skips).
|
746 |
+
|
747 |
+
for idx, decode in enumerate(self.decoder):
|
748 |
+
skip = saved.pop(-1)
|
749 |
+
x, pre = decode(x, skip, lengths.pop(-1))
|
750 |
+
# `pre` contains the output just before final transposed convolution,
|
751 |
+
# which is used when the freq. and time branch separate.
|
752 |
+
|
753 |
+
if self.hybrid:
|
754 |
+
offset = self.depth - len(self.tdecoder)
|
755 |
+
if self.hybrid and idx >= offset:
|
756 |
+
tdec = self.tdecoder[idx - offset]
|
757 |
+
length_t = lengths_t.pop(-1)
|
758 |
+
if tdec.empty:
|
759 |
+
assert pre.shape[2] == 1, pre.shape
|
760 |
+
pre = pre[:, :, 0]
|
761 |
+
xt, _ = tdec(pre, None, length_t)
|
762 |
+
else:
|
763 |
+
skip = saved_t.pop(-1)
|
764 |
+
xt, _ = tdec(xt, skip, length_t)
|
765 |
+
|
766 |
+
# Let's make sure we used all stored skip connections.
|
767 |
+
assert len(saved) == 0
|
768 |
+
assert len(lengths_t) == 0
|
769 |
+
assert len(saved_t) == 0
|
770 |
+
|
771 |
+
S = len(self.sources)
|
772 |
+
x = x.view(B, S, -1, Fq, T)
|
773 |
+
x = x * std[:, None] + mean[:, None]
|
774 |
+
|
775 |
+
zout = self._mask(z, x)
|
776 |
+
x = self._ispec(zout, length)
|
777 |
+
|
778 |
+
if self.hybrid:
|
779 |
+
xt = xt.view(B, S, -1, length)
|
780 |
+
xt = xt * stdt[:, None] + meant[:, None]
|
781 |
+
x = xt + x
|
782 |
+
return x
|
demucs4/htdemucs.py
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# First author is Simon Rouard.
|
7 |
+
"""
|
8 |
+
This code contains the spectrogram and Hybrid version of Demucs.
|
9 |
+
"""
|
10 |
+
import math
|
11 |
+
|
12 |
+
from openunmix.filtering import wiener
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from fractions import Fraction
|
17 |
+
from einops import rearrange
|
18 |
+
|
19 |
+
from .transformer import CrossTransformerEncoder
|
20 |
+
|
21 |
+
from .demucs import rescale_module
|
22 |
+
from .states import capture_init
|
23 |
+
from .spec import spectro, ispectro
|
24 |
+
from .hdemucs import pad1d, ScaledEmbedding, HEncLayer, MultiWrap, HDecLayer
|
25 |
+
|
26 |
+
|
27 |
+
class HTDemucs(nn.Module):
|
28 |
+
"""
|
29 |
+
Spectrogram and hybrid Demucs model.
|
30 |
+
The spectrogram model has the same structure as Demucs, except the first few layers are over the
|
31 |
+
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
|
32 |
+
Frequency layers can still access information across time steps thanks to the DConv residual.
|
33 |
+
|
34 |
+
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
|
35 |
+
as the frequency branch and then the two are combined. The opposite happens in the decoder.
|
36 |
+
|
37 |
+
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
|
38 |
+
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
|
39 |
+
Open Unmix implementation [Stoter et al. 2019].
|
40 |
+
|
41 |
+
The loss is always on the temporal domain, by backpropagating through the above
|
42 |
+
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
|
43 |
+
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
|
44 |
+
contribution, without changing the one from the waveform, which will lead to worse performance.
|
45 |
+
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
|
46 |
+
CaC on the other hand provides similar performance for hybrid, and works naturally with
|
47 |
+
hybrid models.
|
48 |
+
|
49 |
+
This model also uses frequency embeddings are used to improve efficiency on convolutions
|
50 |
+
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
|
51 |
+
|
52 |
+
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
|
53 |
+
"""
|
54 |
+
|
55 |
+
@capture_init
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
sources,
|
59 |
+
# Channels
|
60 |
+
audio_channels=2,
|
61 |
+
channels=48,
|
62 |
+
channels_time=None,
|
63 |
+
growth=2,
|
64 |
+
# STFT
|
65 |
+
nfft=4096,
|
66 |
+
wiener_iters=0,
|
67 |
+
end_iters=0,
|
68 |
+
wiener_residual=False,
|
69 |
+
cac=True,
|
70 |
+
# Main structure
|
71 |
+
depth=4,
|
72 |
+
rewrite=True,
|
73 |
+
# Frequency branch
|
74 |
+
multi_freqs=None,
|
75 |
+
multi_freqs_depth=3,
|
76 |
+
freq_emb=0.2,
|
77 |
+
emb_scale=10,
|
78 |
+
emb_smooth=True,
|
79 |
+
# Convolutions
|
80 |
+
kernel_size=8,
|
81 |
+
time_stride=2,
|
82 |
+
stride=4,
|
83 |
+
context=1,
|
84 |
+
context_enc=0,
|
85 |
+
# Normalization
|
86 |
+
norm_starts=4,
|
87 |
+
norm_groups=4,
|
88 |
+
# DConv residual branch
|
89 |
+
dconv_mode=1,
|
90 |
+
dconv_depth=2,
|
91 |
+
dconv_comp=8,
|
92 |
+
dconv_init=1e-3,
|
93 |
+
# Before the Transformer
|
94 |
+
bottom_channels=0,
|
95 |
+
# Transformer
|
96 |
+
t_layers=5,
|
97 |
+
t_emb="sin",
|
98 |
+
t_hidden_scale=4.0,
|
99 |
+
t_heads=8,
|
100 |
+
t_dropout=0.0,
|
101 |
+
t_max_positions=10000,
|
102 |
+
t_norm_in=True,
|
103 |
+
t_norm_in_group=False,
|
104 |
+
t_group_norm=False,
|
105 |
+
t_norm_first=True,
|
106 |
+
t_norm_out=True,
|
107 |
+
t_max_period=10000.0,
|
108 |
+
t_weight_decay=0.0,
|
109 |
+
t_lr=None,
|
110 |
+
t_layer_scale=True,
|
111 |
+
t_gelu=True,
|
112 |
+
t_weight_pos_embed=1.0,
|
113 |
+
t_sin_random_shift=0,
|
114 |
+
t_cape_mean_normalize=True,
|
115 |
+
t_cape_augment=True,
|
116 |
+
t_cape_glob_loc_scale=[5000.0, 1.0, 1.4],
|
117 |
+
t_sparse_self_attn=False,
|
118 |
+
t_sparse_cross_attn=False,
|
119 |
+
t_mask_type="diag",
|
120 |
+
t_mask_random_seed=42,
|
121 |
+
t_sparse_attn_window=500,
|
122 |
+
t_global_window=100,
|
123 |
+
t_sparsity=0.95,
|
124 |
+
t_auto_sparsity=False,
|
125 |
+
# ------ Particuliar parameters
|
126 |
+
t_cross_first=False,
|
127 |
+
# Weight init
|
128 |
+
rescale=0.1,
|
129 |
+
# Metadata
|
130 |
+
samplerate=44100,
|
131 |
+
segment=10,
|
132 |
+
use_train_segment=True,
|
133 |
+
):
|
134 |
+
"""
|
135 |
+
Args:
|
136 |
+
sources (list[str]): list of source names.
|
137 |
+
audio_channels (int): input/output audio channels.
|
138 |
+
channels (int): initial number of hidden channels.
|
139 |
+
channels_time: if not None, use a different `channels` value for the time branch.
|
140 |
+
growth: increase the number of hidden channels by this factor at each layer.
|
141 |
+
nfft: number of fft bins. Note that changing this require careful computation of
|
142 |
+
various shape parameters and will not work out of the box for hybrid models.
|
143 |
+
wiener_iters: when using Wiener filtering, number of iterations at test time.
|
144 |
+
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
|
145 |
+
wiener_residual: add residual source before wiener filtering.
|
146 |
+
cac: uses complex as channels, i.e. complex numbers are 2 channels each
|
147 |
+
in input and output. no further processing is done before ISTFT.
|
148 |
+
depth (int): number of layers in the encoder and in the decoder.
|
149 |
+
rewrite (bool): add 1x1 convolution to each layer.
|
150 |
+
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
|
151 |
+
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
|
152 |
+
layers will be wrapped.
|
153 |
+
freq_emb: add frequency embedding after the first frequency layer if > 0,
|
154 |
+
the actual value controls the weight of the embedding.
|
155 |
+
emb_scale: equivalent to scaling the embedding learning rate
|
156 |
+
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
|
157 |
+
kernel_size: kernel_size for encoder and decoder layers.
|
158 |
+
stride: stride for encoder and decoder layers.
|
159 |
+
time_stride: stride for the final time layer, after the merge.
|
160 |
+
context: context for 1x1 conv in the decoder.
|
161 |
+
context_enc: context for 1x1 conv in the encoder.
|
162 |
+
norm_starts: layer at which group norm starts being used.
|
163 |
+
decoder layers are numbered in reverse order.
|
164 |
+
norm_groups: number of groups for group norm.
|
165 |
+
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
166 |
+
dconv_depth: depth of residual DConv branch.
|
167 |
+
dconv_comp: compression of DConv branch.
|
168 |
+
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
169 |
+
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
170 |
+
dconv_init: initial scale for the DConv branch LayerScale.
|
171 |
+
bottom_channels: if >0 it adds a linear layer (1x1 Conv) before and after the
|
172 |
+
transformer in order to change the number of channels
|
173 |
+
t_layers: number of layers in each branch (waveform and spec) of the transformer
|
174 |
+
t_emb: "sin", "cape" or "scaled"
|
175 |
+
t_hidden_scale: the hidden scale of the Feedforward parts of the transformer
|
176 |
+
for instance if C = 384 (the number of channels in the transformer) and
|
177 |
+
t_hidden_scale = 4.0 then the intermediate layer of the FFN has dimension
|
178 |
+
384 * 4 = 1536
|
179 |
+
t_heads: number of heads for the transformer
|
180 |
+
t_dropout: dropout in the transformer
|
181 |
+
t_max_positions: max_positions for the "scaled" positional embedding, only
|
182 |
+
useful if t_emb="scaled"
|
183 |
+
t_norm_in: (bool) norm before addinf positional embedding and getting into the
|
184 |
+
transformer layers
|
185 |
+
t_norm_in_group: (bool) if True while t_norm_in=True, the norm is on all the
|
186 |
+
timesteps (GroupNorm with group=1)
|
187 |
+
t_group_norm: (bool) if True, the norms of the Encoder Layers are on all the
|
188 |
+
timesteps (GroupNorm with group=1)
|
189 |
+
t_norm_first: (bool) if True the norm is before the attention and before the FFN
|
190 |
+
t_norm_out: (bool) if True, there is a GroupNorm (group=1) at the end of each layer
|
191 |
+
t_max_period: (float) denominator in the sinusoidal embedding expression
|
192 |
+
t_weight_decay: (float) weight decay for the transformer
|
193 |
+
t_lr: (float) specific learning rate for the transformer
|
194 |
+
t_layer_scale: (bool) Layer Scale for the transformer
|
195 |
+
t_gelu: (bool) activations of the transformer are GeLU if True, ReLU else
|
196 |
+
t_weight_pos_embed: (float) weighting of the positional embedding
|
197 |
+
t_cape_mean_normalize: (bool) if t_emb="cape", normalisation of positional embeddings
|
198 |
+
see: https://arxiv.org/abs/2106.03143
|
199 |
+
t_cape_augment: (bool) if t_emb="cape", must be True during training and False
|
200 |
+
during the inference, see: https://arxiv.org/abs/2106.03143
|
201 |
+
t_cape_glob_loc_scale: (list of 3 floats) if t_emb="cape", CAPE parameters
|
202 |
+
see: https://arxiv.org/abs/2106.03143
|
203 |
+
t_sparse_self_attn: (bool) if True, the self attentions are sparse
|
204 |
+
t_sparse_cross_attn: (bool) if True, the cross-attentions are sparse (don't use it
|
205 |
+
unless you designed really specific masks)
|
206 |
+
t_mask_type: (str) can be "diag", "jmask", "random", "global" or any combination
|
207 |
+
with '_' between: i.e. "diag_jmask_random" (note that this is permutation
|
208 |
+
invariant i.e. "diag_jmask_random" is equivalent to "jmask_random_diag")
|
209 |
+
t_mask_random_seed: (int) if "random" is in t_mask_type, controls the seed
|
210 |
+
that generated the random part of the mask
|
211 |
+
t_sparse_attn_window: (int) if "diag" is in t_mask_type, for a query (i), and
|
212 |
+
a key (j), the mask is True id |i-j|<=t_sparse_attn_window
|
213 |
+
t_global_window: (int) if "global" is in t_mask_type, mask[:t_global_window, :]
|
214 |
+
and mask[:, :t_global_window] will be True
|
215 |
+
t_sparsity: (float) if "random" is in t_mask_type, t_sparsity is the sparsity
|
216 |
+
level of the random part of the mask.
|
217 |
+
t_cross_first: (bool) if True cross attention is the first layer of the
|
218 |
+
transformer (False seems to be better)
|
219 |
+
rescale: weight rescaling trick
|
220 |
+
use_train_segment: (bool) if True, the actual size that is used during the
|
221 |
+
training is used during inference.
|
222 |
+
"""
|
223 |
+
super().__init__()
|
224 |
+
self.cac = cac
|
225 |
+
self.wiener_residual = wiener_residual
|
226 |
+
self.audio_channels = audio_channels
|
227 |
+
self.sources = sources
|
228 |
+
self.kernel_size = kernel_size
|
229 |
+
self.context = context
|
230 |
+
self.stride = stride
|
231 |
+
self.depth = depth
|
232 |
+
self.bottom_channels = bottom_channels
|
233 |
+
self.channels = channels
|
234 |
+
self.samplerate = samplerate
|
235 |
+
self.segment = segment
|
236 |
+
self.use_train_segment = use_train_segment
|
237 |
+
self.nfft = nfft
|
238 |
+
self.hop_length = nfft // 4
|
239 |
+
self.wiener_iters = wiener_iters
|
240 |
+
self.end_iters = end_iters
|
241 |
+
self.freq_emb = None
|
242 |
+
assert wiener_iters == end_iters
|
243 |
+
|
244 |
+
self.encoder = nn.ModuleList()
|
245 |
+
self.decoder = nn.ModuleList()
|
246 |
+
|
247 |
+
self.tencoder = nn.ModuleList()
|
248 |
+
self.tdecoder = nn.ModuleList()
|
249 |
+
|
250 |
+
chin = audio_channels
|
251 |
+
chin_z = chin # number of channels for the freq branch
|
252 |
+
if self.cac:
|
253 |
+
chin_z *= 2
|
254 |
+
chout = channels_time or channels
|
255 |
+
chout_z = channels
|
256 |
+
freqs = nfft // 2
|
257 |
+
|
258 |
+
for index in range(depth):
|
259 |
+
norm = index >= norm_starts
|
260 |
+
freq = freqs > 1
|
261 |
+
stri = stride
|
262 |
+
ker = kernel_size
|
263 |
+
if not freq:
|
264 |
+
assert freqs == 1
|
265 |
+
ker = time_stride * 2
|
266 |
+
stri = time_stride
|
267 |
+
|
268 |
+
pad = True
|
269 |
+
last_freq = False
|
270 |
+
if freq and freqs <= kernel_size:
|
271 |
+
ker = freqs
|
272 |
+
pad = False
|
273 |
+
last_freq = True
|
274 |
+
|
275 |
+
kw = {
|
276 |
+
"kernel_size": ker,
|
277 |
+
"stride": stri,
|
278 |
+
"freq": freq,
|
279 |
+
"pad": pad,
|
280 |
+
"norm": norm,
|
281 |
+
"rewrite": rewrite,
|
282 |
+
"norm_groups": norm_groups,
|
283 |
+
"dconv_kw": {
|
284 |
+
"depth": dconv_depth,
|
285 |
+
"compress": dconv_comp,
|
286 |
+
"init": dconv_init,
|
287 |
+
"gelu": True,
|
288 |
+
},
|
289 |
+
}
|
290 |
+
kwt = dict(kw)
|
291 |
+
kwt["freq"] = 0
|
292 |
+
kwt["kernel_size"] = kernel_size
|
293 |
+
kwt["stride"] = stride
|
294 |
+
kwt["pad"] = True
|
295 |
+
kw_dec = dict(kw)
|
296 |
+
multi = False
|
297 |
+
if multi_freqs and index < multi_freqs_depth:
|
298 |
+
multi = True
|
299 |
+
kw_dec["context_freq"] = False
|
300 |
+
|
301 |
+
if last_freq:
|
302 |
+
chout_z = max(chout, chout_z)
|
303 |
+
chout = chout_z
|
304 |
+
|
305 |
+
enc = HEncLayer(
|
306 |
+
chin_z, chout_z, dconv=dconv_mode & 1, context=context_enc, **kw
|
307 |
+
)
|
308 |
+
if freq:
|
309 |
+
tenc = HEncLayer(
|
310 |
+
chin,
|
311 |
+
chout,
|
312 |
+
dconv=dconv_mode & 1,
|
313 |
+
context=context_enc,
|
314 |
+
empty=last_freq,
|
315 |
+
**kwt
|
316 |
+
)
|
317 |
+
self.tencoder.append(tenc)
|
318 |
+
|
319 |
+
if multi:
|
320 |
+
enc = MultiWrap(enc, multi_freqs)
|
321 |
+
self.encoder.append(enc)
|
322 |
+
if index == 0:
|
323 |
+
chin = self.audio_channels * len(self.sources)
|
324 |
+
chin_z = chin
|
325 |
+
if self.cac:
|
326 |
+
chin_z *= 2
|
327 |
+
dec = HDecLayer(
|
328 |
+
chout_z,
|
329 |
+
chin_z,
|
330 |
+
dconv=dconv_mode & 2,
|
331 |
+
last=index == 0,
|
332 |
+
context=context,
|
333 |
+
**kw_dec
|
334 |
+
)
|
335 |
+
if multi:
|
336 |
+
dec = MultiWrap(dec, multi_freqs)
|
337 |
+
if freq:
|
338 |
+
tdec = HDecLayer(
|
339 |
+
chout,
|
340 |
+
chin,
|
341 |
+
dconv=dconv_mode & 2,
|
342 |
+
empty=last_freq,
|
343 |
+
last=index == 0,
|
344 |
+
context=context,
|
345 |
+
**kwt
|
346 |
+
)
|
347 |
+
self.tdecoder.insert(0, tdec)
|
348 |
+
self.decoder.insert(0, dec)
|
349 |
+
|
350 |
+
chin = chout
|
351 |
+
chin_z = chout_z
|
352 |
+
chout = int(growth * chout)
|
353 |
+
chout_z = int(growth * chout_z)
|
354 |
+
if freq:
|
355 |
+
if freqs <= kernel_size:
|
356 |
+
freqs = 1
|
357 |
+
else:
|
358 |
+
freqs //= stride
|
359 |
+
if index == 0 and freq_emb:
|
360 |
+
self.freq_emb = ScaledEmbedding(
|
361 |
+
freqs, chin_z, smooth=emb_smooth, scale=emb_scale
|
362 |
+
)
|
363 |
+
self.freq_emb_scale = freq_emb
|
364 |
+
|
365 |
+
if rescale:
|
366 |
+
rescale_module(self, reference=rescale)
|
367 |
+
|
368 |
+
transformer_channels = channels * growth ** (depth - 1)
|
369 |
+
if bottom_channels:
|
370 |
+
self.channel_upsampler = nn.Conv1d(transformer_channels, bottom_channels, 1)
|
371 |
+
self.channel_downsampler = nn.Conv1d(
|
372 |
+
bottom_channels, transformer_channels, 1
|
373 |
+
)
|
374 |
+
self.channel_upsampler_t = nn.Conv1d(
|
375 |
+
transformer_channels, bottom_channels, 1
|
376 |
+
)
|
377 |
+
self.channel_downsampler_t = nn.Conv1d(
|
378 |
+
bottom_channels, transformer_channels, 1
|
379 |
+
)
|
380 |
+
|
381 |
+
transformer_channels = bottom_channels
|
382 |
+
|
383 |
+
if t_layers > 0:
|
384 |
+
self.crosstransformer = CrossTransformerEncoder(
|
385 |
+
dim=transformer_channels,
|
386 |
+
emb=t_emb,
|
387 |
+
hidden_scale=t_hidden_scale,
|
388 |
+
num_heads=t_heads,
|
389 |
+
num_layers=t_layers,
|
390 |
+
cross_first=t_cross_first,
|
391 |
+
dropout=t_dropout,
|
392 |
+
max_positions=t_max_positions,
|
393 |
+
norm_in=t_norm_in,
|
394 |
+
norm_in_group=t_norm_in_group,
|
395 |
+
group_norm=t_group_norm,
|
396 |
+
norm_first=t_norm_first,
|
397 |
+
norm_out=t_norm_out,
|
398 |
+
max_period=t_max_period,
|
399 |
+
weight_decay=t_weight_decay,
|
400 |
+
lr=t_lr,
|
401 |
+
layer_scale=t_layer_scale,
|
402 |
+
gelu=t_gelu,
|
403 |
+
sin_random_shift=t_sin_random_shift,
|
404 |
+
weight_pos_embed=t_weight_pos_embed,
|
405 |
+
cape_mean_normalize=t_cape_mean_normalize,
|
406 |
+
cape_augment=t_cape_augment,
|
407 |
+
cape_glob_loc_scale=t_cape_glob_loc_scale,
|
408 |
+
sparse_self_attn=t_sparse_self_attn,
|
409 |
+
sparse_cross_attn=t_sparse_cross_attn,
|
410 |
+
mask_type=t_mask_type,
|
411 |
+
mask_random_seed=t_mask_random_seed,
|
412 |
+
sparse_attn_window=t_sparse_attn_window,
|
413 |
+
global_window=t_global_window,
|
414 |
+
sparsity=t_sparsity,
|
415 |
+
auto_sparsity=t_auto_sparsity,
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
self.crosstransformer = None
|
419 |
+
|
420 |
+
def _spec(self, x):
|
421 |
+
hl = self.hop_length
|
422 |
+
nfft = self.nfft
|
423 |
+
x0 = x # noqa
|
424 |
+
|
425 |
+
# We re-pad the signal in order to keep the property
|
426 |
+
# that the size of the output is exactly the size of the input
|
427 |
+
# divided by the stride (here hop_length), when divisible.
|
428 |
+
# This is achieved by padding by 1/4th of the kernel size (here nfft).
|
429 |
+
# which is not supported by torch.stft.
|
430 |
+
# Having all convolution operations follow this convention allow to easily
|
431 |
+
# align the time and frequency branches later on.
|
432 |
+
assert hl == nfft // 4
|
433 |
+
le = int(math.ceil(x.shape[-1] / hl))
|
434 |
+
pad = hl // 2 * 3
|
435 |
+
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode="reflect")
|
436 |
+
|
437 |
+
z = spectro(x, nfft, hl)[..., :-1, :]
|
438 |
+
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
|
439 |
+
z = z[..., 2: 2 + le]
|
440 |
+
return z
|
441 |
+
|
442 |
+
def _ispec(self, z, length=None, scale=0):
|
443 |
+
hl = self.hop_length // (4**scale)
|
444 |
+
z = F.pad(z, (0, 0, 0, 1))
|
445 |
+
z = F.pad(z, (2, 2))
|
446 |
+
pad = hl // 2 * 3
|
447 |
+
le = hl * int(math.ceil(length / hl)) + 2 * pad
|
448 |
+
x = ispectro(z, hl, length=le)
|
449 |
+
x = x[..., pad: pad + length]
|
450 |
+
return x
|
451 |
+
|
452 |
+
def _magnitude(self, z):
|
453 |
+
# return the magnitude of the spectrogram, except when cac is True,
|
454 |
+
# in which case we just move the complex dimension to the channel one.
|
455 |
+
if self.cac:
|
456 |
+
B, C, Fr, T = z.shape
|
457 |
+
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
|
458 |
+
m = m.reshape(B, C * 2, Fr, T)
|
459 |
+
else:
|
460 |
+
m = z.abs()
|
461 |
+
return m
|
462 |
+
|
463 |
+
def _mask(self, z, m):
|
464 |
+
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
|
465 |
+
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
|
466 |
+
niters = self.wiener_iters
|
467 |
+
if self.cac:
|
468 |
+
B, S, C, Fr, T = m.shape
|
469 |
+
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
|
470 |
+
out = torch.view_as_complex(out.contiguous())
|
471 |
+
return out
|
472 |
+
if self.training:
|
473 |
+
niters = self.end_iters
|
474 |
+
if niters < 0:
|
475 |
+
z = z[:, None]
|
476 |
+
return z / (1e-8 + z.abs()) * m
|
477 |
+
else:
|
478 |
+
return self._wiener(m, z, niters)
|
479 |
+
|
480 |
+
def _wiener(self, mag_out, mix_stft, niters):
|
481 |
+
# apply wiener filtering from OpenUnmix.
|
482 |
+
init = mix_stft.dtype
|
483 |
+
wiener_win_len = 300
|
484 |
+
residual = self.wiener_residual
|
485 |
+
|
486 |
+
B, S, C, Fq, T = mag_out.shape
|
487 |
+
mag_out = mag_out.permute(0, 4, 3, 2, 1)
|
488 |
+
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
|
489 |
+
|
490 |
+
outs = []
|
491 |
+
for sample in range(B):
|
492 |
+
pos = 0
|
493 |
+
out = []
|
494 |
+
for pos in range(0, T, wiener_win_len):
|
495 |
+
frame = slice(pos, pos + wiener_win_len)
|
496 |
+
z_out = wiener(
|
497 |
+
mag_out[sample, frame],
|
498 |
+
mix_stft[sample, frame],
|
499 |
+
niters,
|
500 |
+
residual=residual,
|
501 |
+
)
|
502 |
+
out.append(z_out.transpose(-1, -2))
|
503 |
+
outs.append(torch.cat(out, dim=0))
|
504 |
+
out = torch.view_as_complex(torch.stack(outs, 0))
|
505 |
+
out = out.permute(0, 4, 3, 2, 1).contiguous()
|
506 |
+
if residual:
|
507 |
+
out = out[:, :-1]
|
508 |
+
assert list(out.shape) == [B, S, C, Fq, T]
|
509 |
+
return out.to(init)
|
510 |
+
|
511 |
+
def valid_length(self, length: int):
|
512 |
+
"""
|
513 |
+
Return a length that is appropriate for evaluation.
|
514 |
+
In our case, always return the training length, unless
|
515 |
+
it is smaller than the given length, in which case this
|
516 |
+
raises an error.
|
517 |
+
"""
|
518 |
+
if not self.use_train_segment:
|
519 |
+
return length
|
520 |
+
training_length = int(self.segment * self.samplerate)
|
521 |
+
if training_length < length:
|
522 |
+
raise ValueError(
|
523 |
+
f"Given length {length} is longer than "
|
524 |
+
f"training length {training_length}")
|
525 |
+
return training_length
|
526 |
+
|
527 |
+
def forward(self, mix):
|
528 |
+
length = mix.shape[-1]
|
529 |
+
length_pre_pad = None
|
530 |
+
if self.use_train_segment:
|
531 |
+
if self.training:
|
532 |
+
self.segment = Fraction(mix.shape[-1], self.samplerate)
|
533 |
+
else:
|
534 |
+
training_length = int(self.segment * self.samplerate)
|
535 |
+
if mix.shape[-1] < training_length:
|
536 |
+
length_pre_pad = mix.shape[-1]
|
537 |
+
mix = F.pad(mix, (0, training_length - length_pre_pad))
|
538 |
+
z = self._spec(mix)
|
539 |
+
mag = self._magnitude(z)
|
540 |
+
x = mag
|
541 |
+
|
542 |
+
B, C, Fq, T = x.shape
|
543 |
+
|
544 |
+
# unlike previous Demucs, we always normalize because it is easier.
|
545 |
+
mean = x.mean(dim=(1, 2, 3), keepdim=True)
|
546 |
+
std = x.std(dim=(1, 2, 3), keepdim=True)
|
547 |
+
x = (x - mean) / (1e-5 + std)
|
548 |
+
# x will be the freq. branch input.
|
549 |
+
|
550 |
+
# Prepare the time branch input.
|
551 |
+
xt = mix
|
552 |
+
meant = xt.mean(dim=(1, 2), keepdim=True)
|
553 |
+
stdt = xt.std(dim=(1, 2), keepdim=True)
|
554 |
+
xt = (xt - meant) / (1e-5 + stdt)
|
555 |
+
|
556 |
+
# okay, this is a giant mess I know...
|
557 |
+
saved = [] # skip connections, freq.
|
558 |
+
saved_t = [] # skip connections, time.
|
559 |
+
lengths = [] # saved lengths to properly remove padding, freq branch.
|
560 |
+
lengths_t = [] # saved lengths for time branch.
|
561 |
+
for idx, encode in enumerate(self.encoder):
|
562 |
+
lengths.append(x.shape[-1])
|
563 |
+
inject = None
|
564 |
+
if idx < len(self.tencoder):
|
565 |
+
# we have not yet merged branches.
|
566 |
+
lengths_t.append(xt.shape[-1])
|
567 |
+
tenc = self.tencoder[idx]
|
568 |
+
xt = tenc(xt)
|
569 |
+
if not tenc.empty:
|
570 |
+
# save for skip connection
|
571 |
+
saved_t.append(xt)
|
572 |
+
else:
|
573 |
+
# tenc contains just the first conv., so that now time and freq.
|
574 |
+
# branches have the same shape and can be merged.
|
575 |
+
inject = xt
|
576 |
+
x = encode(x, inject)
|
577 |
+
if idx == 0 and self.freq_emb is not None:
|
578 |
+
# add frequency embedding to allow for non equivariant convolutions
|
579 |
+
# over the frequency axis.
|
580 |
+
frs = torch.arange(x.shape[-2], device=x.device)
|
581 |
+
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
|
582 |
+
x = x + self.freq_emb_scale * emb
|
583 |
+
|
584 |
+
saved.append(x)
|
585 |
+
if self.crosstransformer:
|
586 |
+
if self.bottom_channels:
|
587 |
+
b, c, f, t = x.shape
|
588 |
+
x = rearrange(x, "b c f t-> b c (f t)")
|
589 |
+
x = self.channel_upsampler(x)
|
590 |
+
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
591 |
+
xt = self.channel_upsampler_t(xt)
|
592 |
+
|
593 |
+
x, xt = self.crosstransformer(x, xt)
|
594 |
+
|
595 |
+
if self.bottom_channels:
|
596 |
+
x = rearrange(x, "b c f t-> b c (f t)")
|
597 |
+
x = self.channel_downsampler(x)
|
598 |
+
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
599 |
+
xt = self.channel_downsampler_t(xt)
|
600 |
+
|
601 |
+
for idx, decode in enumerate(self.decoder):
|
602 |
+
skip = saved.pop(-1)
|
603 |
+
x, pre = decode(x, skip, lengths.pop(-1))
|
604 |
+
# `pre` contains the output just before final transposed convolution,
|
605 |
+
# which is used when the freq. and time branch separate.
|
606 |
+
|
607 |
+
offset = self.depth - len(self.tdecoder)
|
608 |
+
if idx >= offset:
|
609 |
+
tdec = self.tdecoder[idx - offset]
|
610 |
+
length_t = lengths_t.pop(-1)
|
611 |
+
if tdec.empty:
|
612 |
+
assert pre.shape[2] == 1, pre.shape
|
613 |
+
pre = pre[:, :, 0]
|
614 |
+
xt, _ = tdec(pre, None, length_t)
|
615 |
+
else:
|
616 |
+
skip = saved_t.pop(-1)
|
617 |
+
xt, _ = tdec(xt, skip, length_t)
|
618 |
+
|
619 |
+
# Let's make sure we used all stored skip connections.
|
620 |
+
assert len(saved) == 0
|
621 |
+
assert len(lengths_t) == 0
|
622 |
+
assert len(saved_t) == 0
|
623 |
+
|
624 |
+
S = len(self.sources)
|
625 |
+
x = x.view(B, S, -1, Fq, T)
|
626 |
+
x = x * std[:, None] + mean[:, None]
|
627 |
+
|
628 |
+
zout = self._mask(z, x)
|
629 |
+
if self.use_train_segment:
|
630 |
+
if self.training:
|
631 |
+
x = self._ispec(zout, length)
|
632 |
+
else:
|
633 |
+
x = self._ispec(zout, training_length)
|
634 |
+
else:
|
635 |
+
x = self._ispec(zout, length)
|
636 |
+
|
637 |
+
if self.use_train_segment:
|
638 |
+
if self.training:
|
639 |
+
xt = xt.view(B, S, -1, length)
|
640 |
+
else:
|
641 |
+
xt = xt.view(B, S, -1, training_length)
|
642 |
+
else:
|
643 |
+
xt = xt.view(B, S, -1, length)
|
644 |
+
xt = xt * stdt[:, None] + meant[:, None]
|
645 |
+
x = xt + x
|
646 |
+
if length_pre_pad:
|
647 |
+
x = x[..., :length_pre_pad]
|
648 |
+
return x
|
demucs4/spec.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Conveniance wrapper to perform STFT and iSTFT"""
|
7 |
+
|
8 |
+
import torch as th
|
9 |
+
|
10 |
+
|
11 |
+
def spectro(x, n_fft=512, hop_length=None, pad=0):
|
12 |
+
*other, length = x.shape
|
13 |
+
x = x.reshape(-1, length)
|
14 |
+
z = th.stft(x,
|
15 |
+
n_fft * (1 + pad),
|
16 |
+
hop_length or n_fft // 4,
|
17 |
+
window=th.hann_window(n_fft).to(x),
|
18 |
+
win_length=n_fft,
|
19 |
+
normalized=True,
|
20 |
+
center=True,
|
21 |
+
return_complex=True,
|
22 |
+
pad_mode='reflect')
|
23 |
+
_, freqs, frame = z.shape
|
24 |
+
return z.view(*other, freqs, frame)
|
25 |
+
|
26 |
+
|
27 |
+
def ispectro(z, hop_length=None, length=None, pad=0):
|
28 |
+
*other, freqs, frames = z.shape
|
29 |
+
n_fft = 2 * freqs - 2
|
30 |
+
z = z.view(-1, freqs, frames)
|
31 |
+
win_length = n_fft // (1 + pad)
|
32 |
+
x = th.istft(z,
|
33 |
+
n_fft,
|
34 |
+
hop_length,
|
35 |
+
window=th.hann_window(win_length).to(z.real),
|
36 |
+
win_length=win_length,
|
37 |
+
normalized=True,
|
38 |
+
length=length,
|
39 |
+
center=True)
|
40 |
+
_, length = x.shape
|
41 |
+
return x.view(*other, length)
|
demucs4/states.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""
|
7 |
+
Utilities to save and load models.
|
8 |
+
"""
|
9 |
+
from contextlib import contextmanager
|
10 |
+
|
11 |
+
import functools
|
12 |
+
import hashlib
|
13 |
+
import inspect
|
14 |
+
import io
|
15 |
+
from pathlib import Path
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
from omegaconf import OmegaConf
|
19 |
+
from diffq import DiffQuantizer, UniformQuantizer, restore_quantized_state
|
20 |
+
import torch
|
21 |
+
|
22 |
+
|
23 |
+
def get_quantizer(model, args, optimizer=None):
|
24 |
+
"""Return the quantizer given the XP quantization args."""
|
25 |
+
quantizer = None
|
26 |
+
if args.diffq:
|
27 |
+
quantizer = DiffQuantizer(
|
28 |
+
model, min_size=args.min_size, group_size=args.group_size)
|
29 |
+
if optimizer is not None:
|
30 |
+
quantizer.setup_optimizer(optimizer)
|
31 |
+
elif args.qat:
|
32 |
+
quantizer = UniformQuantizer(
|
33 |
+
model, bits=args.qat, min_size=args.min_size)
|
34 |
+
return quantizer
|
35 |
+
|
36 |
+
|
37 |
+
def load_model(path_or_package, strict=False):
|
38 |
+
"""Load a model from the given serialized model, either given as a dict (already loaded)
|
39 |
+
or a path to a file on disk."""
|
40 |
+
if isinstance(path_or_package, dict):
|
41 |
+
package = path_or_package
|
42 |
+
elif isinstance(path_or_package, (str, Path)):
|
43 |
+
with warnings.catch_warnings():
|
44 |
+
warnings.simplefilter("ignore")
|
45 |
+
path = path_or_package
|
46 |
+
package = torch.load(path, 'cpu')
|
47 |
+
else:
|
48 |
+
raise ValueError(f"Invalid type for {path_or_package}.")
|
49 |
+
|
50 |
+
klass = package["klass"]
|
51 |
+
args = package["args"]
|
52 |
+
kwargs = package["kwargs"]
|
53 |
+
|
54 |
+
if strict:
|
55 |
+
model = klass(*args, **kwargs)
|
56 |
+
else:
|
57 |
+
sig = inspect.signature(klass)
|
58 |
+
for key in list(kwargs):
|
59 |
+
if key not in sig.parameters:
|
60 |
+
warnings.warn("Dropping inexistant parameter " + key)
|
61 |
+
del kwargs[key]
|
62 |
+
model = klass(*args, **kwargs)
|
63 |
+
|
64 |
+
state = package["state"]
|
65 |
+
|
66 |
+
set_state(model, state)
|
67 |
+
return model
|
68 |
+
|
69 |
+
|
70 |
+
def get_state(model, quantizer, half=False):
|
71 |
+
"""Get the state from a model, potentially with quantization applied.
|
72 |
+
If `half` is True, model are stored as half precision, which shouldn't impact performance
|
73 |
+
but half the state size."""
|
74 |
+
if quantizer is None:
|
75 |
+
dtype = torch.half if half else None
|
76 |
+
state = {k: p.data.to(device='cpu', dtype=dtype) for k, p in model.state_dict().items()}
|
77 |
+
else:
|
78 |
+
state = quantizer.get_quantized_state()
|
79 |
+
state['__quantized'] = True
|
80 |
+
return state
|
81 |
+
|
82 |
+
|
83 |
+
def set_state(model, state, quantizer=None):
|
84 |
+
"""Set the state on a given model."""
|
85 |
+
if state.get('__quantized'):
|
86 |
+
if quantizer is not None:
|
87 |
+
quantizer.restore_quantized_state(model, state['quantized'])
|
88 |
+
else:
|
89 |
+
restore_quantized_state(model, state)
|
90 |
+
else:
|
91 |
+
model.load_state_dict(state)
|
92 |
+
return state
|
93 |
+
|
94 |
+
|
95 |
+
def save_with_checksum(content, path):
|
96 |
+
"""Save the given value on disk, along with a sha256 hash.
|
97 |
+
Should be used with the output of either `serialize_model` or `get_state`."""
|
98 |
+
buf = io.BytesIO()
|
99 |
+
torch.save(content, buf)
|
100 |
+
sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8]
|
101 |
+
|
102 |
+
path = path.parent / (path.stem + "-" + sig + path.suffix)
|
103 |
+
path.write_bytes(buf.getvalue())
|
104 |
+
|
105 |
+
|
106 |
+
def serialize_model(model, training_args, quantizer=None, half=True):
|
107 |
+
args, kwargs = model._init_args_kwargs
|
108 |
+
klass = model.__class__
|
109 |
+
|
110 |
+
state = get_state(model, quantizer, half)
|
111 |
+
return {
|
112 |
+
'klass': klass,
|
113 |
+
'args': args,
|
114 |
+
'kwargs': kwargs,
|
115 |
+
'state': state,
|
116 |
+
'training_args': OmegaConf.to_container(training_args, resolve=True),
|
117 |
+
}
|
118 |
+
|
119 |
+
|
120 |
+
def copy_state(state):
|
121 |
+
return {k: v.cpu().clone() for k, v in state.items()}
|
122 |
+
|
123 |
+
|
124 |
+
@contextmanager
|
125 |
+
def swap_state(model, state):
|
126 |
+
"""
|
127 |
+
Context manager that swaps the state of a model, e.g:
|
128 |
+
|
129 |
+
# model is in old state
|
130 |
+
with swap_state(model, new_state):
|
131 |
+
# model in new state
|
132 |
+
# model back to old state
|
133 |
+
"""
|
134 |
+
old_state = copy_state(model.state_dict())
|
135 |
+
model.load_state_dict(state, strict=False)
|
136 |
+
try:
|
137 |
+
yield
|
138 |
+
finally:
|
139 |
+
model.load_state_dict(old_state)
|
140 |
+
|
141 |
+
|
142 |
+
def capture_init(init):
|
143 |
+
@functools.wraps(init)
|
144 |
+
def __init__(self, *args, **kwargs):
|
145 |
+
self._init_args_kwargs = (args, kwargs)
|
146 |
+
init(self, *args, **kwargs)
|
147 |
+
|
148 |
+
return __init__
|
demucs4/transformer.py
ADDED
@@ -0,0 +1,839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019-present, Meta, Inc.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# First author is Simon Rouard.
|
7 |
+
|
8 |
+
import random
|
9 |
+
import typing as tp
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import numpy as np
|
15 |
+
import math
|
16 |
+
from einops import rearrange
|
17 |
+
|
18 |
+
|
19 |
+
def create_sin_embedding(
|
20 |
+
length: int, dim: int, shift: int = 0, device="cpu", max_period=10000
|
21 |
+
):
|
22 |
+
# We aim for TBC format
|
23 |
+
assert dim % 2 == 0
|
24 |
+
pos = shift + torch.arange(length, device=device).view(-1, 1, 1)
|
25 |
+
half_dim = dim // 2
|
26 |
+
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
|
27 |
+
phase = pos / (max_period ** (adim / (half_dim - 1)))
|
28 |
+
return torch.cat(
|
29 |
+
[
|
30 |
+
torch.cos(phase),
|
31 |
+
torch.sin(phase),
|
32 |
+
],
|
33 |
+
dim=-1,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def create_2d_sin_embedding(d_model, height, width, device="cpu", max_period=10000):
|
38 |
+
"""
|
39 |
+
:param d_model: dimension of the model
|
40 |
+
:param height: height of the positions
|
41 |
+
:param width: width of the positions
|
42 |
+
:return: d_model*height*width position matrix
|
43 |
+
"""
|
44 |
+
if d_model % 4 != 0:
|
45 |
+
raise ValueError(
|
46 |
+
"Cannot use sin/cos positional encoding with "
|
47 |
+
"odd dimension (got dim={:d})".format(d_model)
|
48 |
+
)
|
49 |
+
pe = torch.zeros(d_model, height, width)
|
50 |
+
# Each dimension use half of d_model
|
51 |
+
d_model = int(d_model / 2)
|
52 |
+
div_term = torch.exp(
|
53 |
+
torch.arange(0.0, d_model, 2) * -(math.log(max_period) / d_model)
|
54 |
+
)
|
55 |
+
pos_w = torch.arange(0.0, width).unsqueeze(1)
|
56 |
+
pos_h = torch.arange(0.0, height).unsqueeze(1)
|
57 |
+
pe[0:d_model:2, :, :] = (
|
58 |
+
torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
|
59 |
+
)
|
60 |
+
pe[1:d_model:2, :, :] = (
|
61 |
+
torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
|
62 |
+
)
|
63 |
+
pe[d_model::2, :, :] = (
|
64 |
+
torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
|
65 |
+
)
|
66 |
+
pe[d_model + 1:: 2, :, :] = (
|
67 |
+
torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
|
68 |
+
)
|
69 |
+
|
70 |
+
return pe[None, :].to(device)
|
71 |
+
|
72 |
+
|
73 |
+
def create_sin_embedding_cape(
|
74 |
+
length: int,
|
75 |
+
dim: int,
|
76 |
+
batch_size: int,
|
77 |
+
mean_normalize: bool,
|
78 |
+
augment: bool, # True during training
|
79 |
+
max_global_shift: float = 0.0, # delta max
|
80 |
+
max_local_shift: float = 0.0, # epsilon max
|
81 |
+
max_scale: float = 1.0,
|
82 |
+
device: str = "cpu",
|
83 |
+
max_period: float = 10000.0,
|
84 |
+
):
|
85 |
+
# We aim for TBC format
|
86 |
+
assert dim % 2 == 0
|
87 |
+
pos = 1.0 * torch.arange(length).view(-1, 1, 1) # (length, 1, 1)
|
88 |
+
pos = pos.repeat(1, batch_size, 1) # (length, batch_size, 1)
|
89 |
+
if mean_normalize:
|
90 |
+
pos -= torch.nanmean(pos, dim=0, keepdim=True)
|
91 |
+
|
92 |
+
if augment:
|
93 |
+
delta = np.random.uniform(
|
94 |
+
-max_global_shift, +max_global_shift, size=[1, batch_size, 1]
|
95 |
+
)
|
96 |
+
delta_local = np.random.uniform(
|
97 |
+
-max_local_shift, +max_local_shift, size=[length, batch_size, 1]
|
98 |
+
)
|
99 |
+
log_lambdas = np.random.uniform(
|
100 |
+
-np.log(max_scale), +np.log(max_scale), size=[1, batch_size, 1]
|
101 |
+
)
|
102 |
+
pos = (pos + delta + delta_local) * np.exp(log_lambdas)
|
103 |
+
|
104 |
+
pos = pos.to(device)
|
105 |
+
|
106 |
+
half_dim = dim // 2
|
107 |
+
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
|
108 |
+
phase = pos / (max_period ** (adim / (half_dim - 1)))
|
109 |
+
return torch.cat(
|
110 |
+
[
|
111 |
+
torch.cos(phase),
|
112 |
+
torch.sin(phase),
|
113 |
+
],
|
114 |
+
dim=-1,
|
115 |
+
).float()
|
116 |
+
|
117 |
+
|
118 |
+
def get_causal_mask(length):
|
119 |
+
pos = torch.arange(length)
|
120 |
+
return pos > pos[:, None]
|
121 |
+
|
122 |
+
|
123 |
+
def get_elementary_mask(
|
124 |
+
T1,
|
125 |
+
T2,
|
126 |
+
mask_type,
|
127 |
+
sparse_attn_window,
|
128 |
+
global_window,
|
129 |
+
mask_random_seed,
|
130 |
+
sparsity,
|
131 |
+
device,
|
132 |
+
):
|
133 |
+
"""
|
134 |
+
When the input of the Decoder has length T1 and the output T2
|
135 |
+
The mask matrix has shape (T2, T1)
|
136 |
+
"""
|
137 |
+
assert mask_type in ["diag", "jmask", "random", "global"]
|
138 |
+
|
139 |
+
if mask_type == "global":
|
140 |
+
mask = torch.zeros(T2, T1, dtype=torch.bool)
|
141 |
+
mask[:, :global_window] = True
|
142 |
+
line_window = int(global_window * T2 / T1)
|
143 |
+
mask[:line_window, :] = True
|
144 |
+
|
145 |
+
if mask_type == "diag":
|
146 |
+
|
147 |
+
mask = torch.zeros(T2, T1, dtype=torch.bool)
|
148 |
+
rows = torch.arange(T2)[:, None]
|
149 |
+
cols = (
|
150 |
+
(T1 / T2 * rows + torch.arange(-sparse_attn_window, sparse_attn_window + 1))
|
151 |
+
.long()
|
152 |
+
.clamp(0, T1 - 1)
|
153 |
+
)
|
154 |
+
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
|
155 |
+
|
156 |
+
elif mask_type == "jmask":
|
157 |
+
mask = torch.zeros(T2 + 2, T1 + 2, dtype=torch.bool)
|
158 |
+
rows = torch.arange(T2 + 2)[:, None]
|
159 |
+
t = torch.arange(0, int((2 * T1) ** 0.5 + 1))
|
160 |
+
t = (t * (t + 1) / 2).int()
|
161 |
+
t = torch.cat([-t.flip(0)[:-1], t])
|
162 |
+
cols = (T1 / T2 * rows + t).long().clamp(0, T1 + 1)
|
163 |
+
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
|
164 |
+
mask = mask[1:-1, 1:-1]
|
165 |
+
|
166 |
+
elif mask_type == "random":
|
167 |
+
gene = torch.Generator(device=device)
|
168 |
+
gene.manual_seed(mask_random_seed)
|
169 |
+
mask = (
|
170 |
+
torch.rand(T1 * T2, generator=gene, device=device).reshape(T2, T1)
|
171 |
+
> sparsity
|
172 |
+
)
|
173 |
+
|
174 |
+
mask = mask.to(device)
|
175 |
+
return mask
|
176 |
+
|
177 |
+
|
178 |
+
def get_mask(
|
179 |
+
T1,
|
180 |
+
T2,
|
181 |
+
mask_type,
|
182 |
+
sparse_attn_window,
|
183 |
+
global_window,
|
184 |
+
mask_random_seed,
|
185 |
+
sparsity,
|
186 |
+
device,
|
187 |
+
):
|
188 |
+
"""
|
189 |
+
Return a SparseCSRTensor mask that is a combination of elementary masks
|
190 |
+
mask_type can be a combination of multiple masks: for instance "diag_jmask_random"
|
191 |
+
"""
|
192 |
+
from xformers.sparse import SparseCSRTensor
|
193 |
+
# create a list
|
194 |
+
mask_types = mask_type.split("_")
|
195 |
+
|
196 |
+
all_masks = [
|
197 |
+
get_elementary_mask(
|
198 |
+
T1,
|
199 |
+
T2,
|
200 |
+
mask,
|
201 |
+
sparse_attn_window,
|
202 |
+
global_window,
|
203 |
+
mask_random_seed,
|
204 |
+
sparsity,
|
205 |
+
device,
|
206 |
+
)
|
207 |
+
for mask in mask_types
|
208 |
+
]
|
209 |
+
|
210 |
+
final_mask = torch.stack(all_masks).sum(axis=0) > 0
|
211 |
+
|
212 |
+
return SparseCSRTensor.from_dense(final_mask[None])
|
213 |
+
|
214 |
+
|
215 |
+
class ScaledEmbedding(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
num_embeddings: int,
|
219 |
+
embedding_dim: int,
|
220 |
+
scale: float = 1.0,
|
221 |
+
boost: float = 3.0,
|
222 |
+
):
|
223 |
+
super().__init__()
|
224 |
+
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
225 |
+
self.embedding.weight.data *= scale / boost
|
226 |
+
self.boost = boost
|
227 |
+
|
228 |
+
@property
|
229 |
+
def weight(self):
|
230 |
+
return self.embedding.weight * self.boost
|
231 |
+
|
232 |
+
def forward(self, x):
|
233 |
+
return self.embedding(x) * self.boost
|
234 |
+
|
235 |
+
|
236 |
+
class LayerScale(nn.Module):
|
237 |
+
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
|
238 |
+
This rescales diagonaly residual outputs close to 0 initially, then learnt.
|
239 |
+
"""
|
240 |
+
|
241 |
+
def __init__(self, channels: int, init: float = 0, channel_last=False):
|
242 |
+
"""
|
243 |
+
channel_last = False corresponds to (B, C, T) tensors
|
244 |
+
channel_last = True corresponds to (T, B, C) tensors
|
245 |
+
"""
|
246 |
+
super().__init__()
|
247 |
+
self.channel_last = channel_last
|
248 |
+
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
|
249 |
+
self.scale.data[:] = init
|
250 |
+
|
251 |
+
def forward(self, x):
|
252 |
+
if self.channel_last:
|
253 |
+
return self.scale * x
|
254 |
+
else:
|
255 |
+
return self.scale[:, None] * x
|
256 |
+
|
257 |
+
|
258 |
+
class MyGroupNorm(nn.GroupNorm):
|
259 |
+
def __init__(self, *args, **kwargs):
|
260 |
+
super().__init__(*args, **kwargs)
|
261 |
+
|
262 |
+
def forward(self, x):
|
263 |
+
"""
|
264 |
+
x: (B, T, C)
|
265 |
+
if num_groups=1: Normalisation on all T and C together for each B
|
266 |
+
"""
|
267 |
+
x = x.transpose(1, 2)
|
268 |
+
return super().forward(x).transpose(1, 2)
|
269 |
+
|
270 |
+
|
271 |
+
class MyTransformerEncoderLayer(nn.TransformerEncoderLayer):
|
272 |
+
def __init__(
|
273 |
+
self,
|
274 |
+
d_model,
|
275 |
+
nhead,
|
276 |
+
dim_feedforward=2048,
|
277 |
+
dropout=0.1,
|
278 |
+
activation=F.relu,
|
279 |
+
group_norm=0,
|
280 |
+
norm_first=False,
|
281 |
+
norm_out=False,
|
282 |
+
layer_norm_eps=1e-5,
|
283 |
+
layer_scale=False,
|
284 |
+
init_values=1e-4,
|
285 |
+
device=None,
|
286 |
+
dtype=None,
|
287 |
+
sparse=False,
|
288 |
+
mask_type="diag",
|
289 |
+
mask_random_seed=42,
|
290 |
+
sparse_attn_window=500,
|
291 |
+
global_window=50,
|
292 |
+
auto_sparsity=False,
|
293 |
+
sparsity=0.95,
|
294 |
+
batch_first=False,
|
295 |
+
):
|
296 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
297 |
+
super().__init__(
|
298 |
+
d_model=d_model,
|
299 |
+
nhead=nhead,
|
300 |
+
dim_feedforward=dim_feedforward,
|
301 |
+
dropout=dropout,
|
302 |
+
activation=activation,
|
303 |
+
layer_norm_eps=layer_norm_eps,
|
304 |
+
batch_first=batch_first,
|
305 |
+
norm_first=norm_first,
|
306 |
+
device=device,
|
307 |
+
dtype=dtype,
|
308 |
+
)
|
309 |
+
self.sparse = sparse
|
310 |
+
self.auto_sparsity = auto_sparsity
|
311 |
+
if sparse:
|
312 |
+
if not auto_sparsity:
|
313 |
+
self.mask_type = mask_type
|
314 |
+
self.sparse_attn_window = sparse_attn_window
|
315 |
+
self.global_window = global_window
|
316 |
+
self.sparsity = sparsity
|
317 |
+
if group_norm:
|
318 |
+
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
319 |
+
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
320 |
+
|
321 |
+
self.norm_out = None
|
322 |
+
if self.norm_first & norm_out:
|
323 |
+
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
|
324 |
+
self.gamma_1 = (
|
325 |
+
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
326 |
+
)
|
327 |
+
self.gamma_2 = (
|
328 |
+
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
329 |
+
)
|
330 |
+
|
331 |
+
if sparse:
|
332 |
+
self.self_attn = MultiheadAttention(
|
333 |
+
d_model, nhead, dropout=dropout, batch_first=batch_first,
|
334 |
+
auto_sparsity=sparsity if auto_sparsity else 0,
|
335 |
+
)
|
336 |
+
self.__setattr__("src_mask", torch.zeros(1, 1))
|
337 |
+
self.mask_random_seed = mask_random_seed
|
338 |
+
|
339 |
+
def forward(self, src, src_mask=None, src_key_padding_mask=None):
|
340 |
+
"""
|
341 |
+
if batch_first = False, src shape is (T, B, C)
|
342 |
+
the case where batch_first=True is not covered
|
343 |
+
"""
|
344 |
+
device = src.device
|
345 |
+
x = src
|
346 |
+
T, B, C = x.shape
|
347 |
+
if self.sparse and not self.auto_sparsity:
|
348 |
+
assert src_mask is None
|
349 |
+
src_mask = self.src_mask
|
350 |
+
if src_mask.shape[-1] != T:
|
351 |
+
src_mask = get_mask(
|
352 |
+
T,
|
353 |
+
T,
|
354 |
+
self.mask_type,
|
355 |
+
self.sparse_attn_window,
|
356 |
+
self.global_window,
|
357 |
+
self.mask_random_seed,
|
358 |
+
self.sparsity,
|
359 |
+
device,
|
360 |
+
)
|
361 |
+
self.__setattr__("src_mask", src_mask)
|
362 |
+
|
363 |
+
if self.norm_first:
|
364 |
+
x = x + self.gamma_1(
|
365 |
+
self._sa_block(self.norm1(x), src_mask, src_key_padding_mask)
|
366 |
+
)
|
367 |
+
x = x + self.gamma_2(self._ff_block(self.norm2(x)))
|
368 |
+
|
369 |
+
if self.norm_out:
|
370 |
+
x = self.norm_out(x)
|
371 |
+
else:
|
372 |
+
x = self.norm1(
|
373 |
+
x + self.gamma_1(self._sa_block(x, src_mask, src_key_padding_mask))
|
374 |
+
)
|
375 |
+
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
|
376 |
+
|
377 |
+
return x
|
378 |
+
|
379 |
+
|
380 |
+
class CrossTransformerEncoderLayer(nn.Module):
|
381 |
+
def __init__(
|
382 |
+
self,
|
383 |
+
d_model: int,
|
384 |
+
nhead: int,
|
385 |
+
dim_feedforward: int = 2048,
|
386 |
+
dropout: float = 0.1,
|
387 |
+
activation=F.relu,
|
388 |
+
layer_norm_eps: float = 1e-5,
|
389 |
+
layer_scale: bool = False,
|
390 |
+
init_values: float = 1e-4,
|
391 |
+
norm_first: bool = False,
|
392 |
+
group_norm: bool = False,
|
393 |
+
norm_out: bool = False,
|
394 |
+
sparse=False,
|
395 |
+
mask_type="diag",
|
396 |
+
mask_random_seed=42,
|
397 |
+
sparse_attn_window=500,
|
398 |
+
global_window=50,
|
399 |
+
sparsity=0.95,
|
400 |
+
auto_sparsity=None,
|
401 |
+
device=None,
|
402 |
+
dtype=None,
|
403 |
+
batch_first=False,
|
404 |
+
):
|
405 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
406 |
+
super().__init__()
|
407 |
+
|
408 |
+
self.sparse = sparse
|
409 |
+
self.auto_sparsity = auto_sparsity
|
410 |
+
if sparse:
|
411 |
+
if not auto_sparsity:
|
412 |
+
self.mask_type = mask_type
|
413 |
+
self.sparse_attn_window = sparse_attn_window
|
414 |
+
self.global_window = global_window
|
415 |
+
self.sparsity = sparsity
|
416 |
+
|
417 |
+
self.cross_attn: nn.Module
|
418 |
+
self.cross_attn = nn.MultiheadAttention(
|
419 |
+
d_model, nhead, dropout=dropout, batch_first=batch_first)
|
420 |
+
# Implementation of Feedforward model
|
421 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
|
422 |
+
self.dropout = nn.Dropout(dropout)
|
423 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)
|
424 |
+
|
425 |
+
self.norm_first = norm_first
|
426 |
+
self.norm1: nn.Module
|
427 |
+
self.norm2: nn.Module
|
428 |
+
self.norm3: nn.Module
|
429 |
+
if group_norm:
|
430 |
+
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
431 |
+
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
432 |
+
self.norm3 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
433 |
+
else:
|
434 |
+
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
435 |
+
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
436 |
+
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
437 |
+
|
438 |
+
self.norm_out = None
|
439 |
+
if self.norm_first & norm_out:
|
440 |
+
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
|
441 |
+
|
442 |
+
self.gamma_1 = (
|
443 |
+
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
444 |
+
)
|
445 |
+
self.gamma_2 = (
|
446 |
+
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
447 |
+
)
|
448 |
+
|
449 |
+
self.dropout1 = nn.Dropout(dropout)
|
450 |
+
self.dropout2 = nn.Dropout(dropout)
|
451 |
+
|
452 |
+
# Legacy string support for activation function.
|
453 |
+
if isinstance(activation, str):
|
454 |
+
self.activation = self._get_activation_fn(activation)
|
455 |
+
else:
|
456 |
+
self.activation = activation
|
457 |
+
|
458 |
+
if sparse:
|
459 |
+
self.cross_attn = MultiheadAttention(
|
460 |
+
d_model, nhead, dropout=dropout, batch_first=batch_first,
|
461 |
+
auto_sparsity=sparsity if auto_sparsity else 0)
|
462 |
+
if not auto_sparsity:
|
463 |
+
self.__setattr__("mask", torch.zeros(1, 1))
|
464 |
+
self.mask_random_seed = mask_random_seed
|
465 |
+
|
466 |
+
def forward(self, q, k, mask=None):
|
467 |
+
"""
|
468 |
+
Args:
|
469 |
+
q: tensor of shape (T, B, C)
|
470 |
+
k: tensor of shape (S, B, C)
|
471 |
+
mask: tensor of shape (T, S)
|
472 |
+
|
473 |
+
"""
|
474 |
+
device = q.device
|
475 |
+
T, B, C = q.shape
|
476 |
+
S, B, C = k.shape
|
477 |
+
if self.sparse and not self.auto_sparsity:
|
478 |
+
assert mask is None
|
479 |
+
mask = self.mask
|
480 |
+
if mask.shape[-1] != S or mask.shape[-2] != T:
|
481 |
+
mask = get_mask(
|
482 |
+
S,
|
483 |
+
T,
|
484 |
+
self.mask_type,
|
485 |
+
self.sparse_attn_window,
|
486 |
+
self.global_window,
|
487 |
+
self.mask_random_seed,
|
488 |
+
self.sparsity,
|
489 |
+
device,
|
490 |
+
)
|
491 |
+
self.__setattr__("mask", mask)
|
492 |
+
|
493 |
+
if self.norm_first:
|
494 |
+
x = q + self.gamma_1(self._ca_block(self.norm1(q), self.norm2(k), mask))
|
495 |
+
x = x + self.gamma_2(self._ff_block(self.norm3(x)))
|
496 |
+
if self.norm_out:
|
497 |
+
x = self.norm_out(x)
|
498 |
+
else:
|
499 |
+
x = self.norm1(q + self.gamma_1(self._ca_block(q, k, mask)))
|
500 |
+
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
|
501 |
+
|
502 |
+
return x
|
503 |
+
|
504 |
+
# self-attention block
|
505 |
+
def _ca_block(self, q, k, attn_mask=None):
|
506 |
+
x = self.cross_attn(q, k, k, attn_mask=attn_mask, need_weights=False)[0]
|
507 |
+
return self.dropout1(x)
|
508 |
+
|
509 |
+
# feed forward block
|
510 |
+
def _ff_block(self, x):
|
511 |
+
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
512 |
+
return self.dropout2(x)
|
513 |
+
|
514 |
+
def _get_activation_fn(self, activation):
|
515 |
+
if activation == "relu":
|
516 |
+
return F.relu
|
517 |
+
elif activation == "gelu":
|
518 |
+
return F.gelu
|
519 |
+
|
520 |
+
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
521 |
+
|
522 |
+
|
523 |
+
# ----------------- MULTI-BLOCKS MODELS: -----------------------
|
524 |
+
|
525 |
+
|
526 |
+
class CrossTransformerEncoder(nn.Module):
|
527 |
+
def __init__(
|
528 |
+
self,
|
529 |
+
dim: int,
|
530 |
+
emb: str = "sin",
|
531 |
+
hidden_scale: float = 4.0,
|
532 |
+
num_heads: int = 8,
|
533 |
+
num_layers: int = 6,
|
534 |
+
cross_first: bool = False,
|
535 |
+
dropout: float = 0.0,
|
536 |
+
max_positions: int = 1000,
|
537 |
+
norm_in: bool = True,
|
538 |
+
norm_in_group: bool = False,
|
539 |
+
group_norm: int = False,
|
540 |
+
norm_first: bool = False,
|
541 |
+
norm_out: bool = False,
|
542 |
+
max_period: float = 10000.0,
|
543 |
+
weight_decay: float = 0.0,
|
544 |
+
lr: tp.Optional[float] = None,
|
545 |
+
layer_scale: bool = False,
|
546 |
+
gelu: bool = True,
|
547 |
+
sin_random_shift: int = 0,
|
548 |
+
weight_pos_embed: float = 1.0,
|
549 |
+
cape_mean_normalize: bool = True,
|
550 |
+
cape_augment: bool = True,
|
551 |
+
cape_glob_loc_scale: list = [5000.0, 1.0, 1.4],
|
552 |
+
sparse_self_attn: bool = False,
|
553 |
+
sparse_cross_attn: bool = False,
|
554 |
+
mask_type: str = "diag",
|
555 |
+
mask_random_seed: int = 42,
|
556 |
+
sparse_attn_window: int = 500,
|
557 |
+
global_window: int = 50,
|
558 |
+
auto_sparsity: bool = False,
|
559 |
+
sparsity: float = 0.95,
|
560 |
+
):
|
561 |
+
super().__init__()
|
562 |
+
"""
|
563 |
+
"""
|
564 |
+
assert dim % num_heads == 0
|
565 |
+
|
566 |
+
hidden_dim = int(dim * hidden_scale)
|
567 |
+
|
568 |
+
self.num_layers = num_layers
|
569 |
+
# classic parity = 1 means that if idx%2 == 1 there is a
|
570 |
+
# classical encoder else there is a cross encoder
|
571 |
+
self.classic_parity = 1 if cross_first else 0
|
572 |
+
self.emb = emb
|
573 |
+
self.max_period = max_period
|
574 |
+
self.weight_decay = weight_decay
|
575 |
+
self.weight_pos_embed = weight_pos_embed
|
576 |
+
self.sin_random_shift = sin_random_shift
|
577 |
+
if emb == "cape":
|
578 |
+
self.cape_mean_normalize = cape_mean_normalize
|
579 |
+
self.cape_augment = cape_augment
|
580 |
+
self.cape_glob_loc_scale = cape_glob_loc_scale
|
581 |
+
if emb == "scaled":
|
582 |
+
self.position_embeddings = ScaledEmbedding(max_positions, dim, scale=0.2)
|
583 |
+
|
584 |
+
self.lr = lr
|
585 |
+
|
586 |
+
activation: tp.Any = F.gelu if gelu else F.relu
|
587 |
+
|
588 |
+
self.norm_in: nn.Module
|
589 |
+
self.norm_in_t: nn.Module
|
590 |
+
if norm_in:
|
591 |
+
self.norm_in = nn.LayerNorm(dim)
|
592 |
+
self.norm_in_t = nn.LayerNorm(dim)
|
593 |
+
elif norm_in_group:
|
594 |
+
self.norm_in = MyGroupNorm(int(norm_in_group), dim)
|
595 |
+
self.norm_in_t = MyGroupNorm(int(norm_in_group), dim)
|
596 |
+
else:
|
597 |
+
self.norm_in = nn.Identity()
|
598 |
+
self.norm_in_t = nn.Identity()
|
599 |
+
|
600 |
+
# spectrogram layers
|
601 |
+
self.layers = nn.ModuleList()
|
602 |
+
# temporal layers
|
603 |
+
self.layers_t = nn.ModuleList()
|
604 |
+
|
605 |
+
kwargs_common = {
|
606 |
+
"d_model": dim,
|
607 |
+
"nhead": num_heads,
|
608 |
+
"dim_feedforward": hidden_dim,
|
609 |
+
"dropout": dropout,
|
610 |
+
"activation": activation,
|
611 |
+
"group_norm": group_norm,
|
612 |
+
"norm_first": norm_first,
|
613 |
+
"norm_out": norm_out,
|
614 |
+
"layer_scale": layer_scale,
|
615 |
+
"mask_type": mask_type,
|
616 |
+
"mask_random_seed": mask_random_seed,
|
617 |
+
"sparse_attn_window": sparse_attn_window,
|
618 |
+
"global_window": global_window,
|
619 |
+
"sparsity": sparsity,
|
620 |
+
"auto_sparsity": auto_sparsity,
|
621 |
+
"batch_first": True,
|
622 |
+
}
|
623 |
+
|
624 |
+
kwargs_classic_encoder = dict(kwargs_common)
|
625 |
+
kwargs_classic_encoder.update({
|
626 |
+
"sparse": sparse_self_attn,
|
627 |
+
})
|
628 |
+
kwargs_cross_encoder = dict(kwargs_common)
|
629 |
+
kwargs_cross_encoder.update({
|
630 |
+
"sparse": sparse_cross_attn,
|
631 |
+
})
|
632 |
+
|
633 |
+
for idx in range(num_layers):
|
634 |
+
if idx % 2 == self.classic_parity:
|
635 |
+
|
636 |
+
self.layers.append(MyTransformerEncoderLayer(**kwargs_classic_encoder))
|
637 |
+
self.layers_t.append(
|
638 |
+
MyTransformerEncoderLayer(**kwargs_classic_encoder)
|
639 |
+
)
|
640 |
+
|
641 |
+
else:
|
642 |
+
self.layers.append(CrossTransformerEncoderLayer(**kwargs_cross_encoder))
|
643 |
+
|
644 |
+
self.layers_t.append(
|
645 |
+
CrossTransformerEncoderLayer(**kwargs_cross_encoder)
|
646 |
+
)
|
647 |
+
|
648 |
+
def forward(self, x, xt):
|
649 |
+
B, C, Fr, T1 = x.shape
|
650 |
+
pos_emb_2d = create_2d_sin_embedding(
|
651 |
+
C, Fr, T1, x.device, self.max_period
|
652 |
+
) # (1, C, Fr, T1)
|
653 |
+
pos_emb_2d = rearrange(pos_emb_2d, "b c fr t1 -> b (t1 fr) c")
|
654 |
+
x = rearrange(x, "b c fr t1 -> b (t1 fr) c")
|
655 |
+
x = self.norm_in(x)
|
656 |
+
x = x + self.weight_pos_embed * pos_emb_2d
|
657 |
+
|
658 |
+
B, C, T2 = xt.shape
|
659 |
+
xt = rearrange(xt, "b c t2 -> b t2 c") # now T2, B, C
|
660 |
+
pos_emb = self._get_pos_embedding(T2, B, C, x.device)
|
661 |
+
pos_emb = rearrange(pos_emb, "t2 b c -> b t2 c")
|
662 |
+
xt = self.norm_in_t(xt)
|
663 |
+
xt = xt + self.weight_pos_embed * pos_emb
|
664 |
+
|
665 |
+
for idx in range(self.num_layers):
|
666 |
+
if idx % 2 == self.classic_parity:
|
667 |
+
x = self.layers[idx](x)
|
668 |
+
xt = self.layers_t[idx](xt)
|
669 |
+
else:
|
670 |
+
old_x = x
|
671 |
+
x = self.layers[idx](x, xt)
|
672 |
+
xt = self.layers_t[idx](xt, old_x)
|
673 |
+
|
674 |
+
x = rearrange(x, "b (t1 fr) c -> b c fr t1", t1=T1)
|
675 |
+
xt = rearrange(xt, "b t2 c -> b c t2")
|
676 |
+
return x, xt
|
677 |
+
|
678 |
+
def _get_pos_embedding(self, T, B, C, device):
|
679 |
+
if self.emb == "sin":
|
680 |
+
shift = random.randrange(self.sin_random_shift + 1)
|
681 |
+
pos_emb = create_sin_embedding(
|
682 |
+
T, C, shift=shift, device=device, max_period=self.max_period
|
683 |
+
)
|
684 |
+
elif self.emb == "cape":
|
685 |
+
if self.training:
|
686 |
+
pos_emb = create_sin_embedding_cape(
|
687 |
+
T,
|
688 |
+
C,
|
689 |
+
B,
|
690 |
+
device=device,
|
691 |
+
max_period=self.max_period,
|
692 |
+
mean_normalize=self.cape_mean_normalize,
|
693 |
+
augment=self.cape_augment,
|
694 |
+
max_global_shift=self.cape_glob_loc_scale[0],
|
695 |
+
max_local_shift=self.cape_glob_loc_scale[1],
|
696 |
+
max_scale=self.cape_glob_loc_scale[2],
|
697 |
+
)
|
698 |
+
else:
|
699 |
+
pos_emb = create_sin_embedding_cape(
|
700 |
+
T,
|
701 |
+
C,
|
702 |
+
B,
|
703 |
+
device=device,
|
704 |
+
max_period=self.max_period,
|
705 |
+
mean_normalize=self.cape_mean_normalize,
|
706 |
+
augment=False,
|
707 |
+
)
|
708 |
+
|
709 |
+
elif self.emb == "scaled":
|
710 |
+
pos = torch.arange(T, device=device)
|
711 |
+
pos_emb = self.position_embeddings(pos)[:, None]
|
712 |
+
|
713 |
+
return pos_emb
|
714 |
+
|
715 |
+
def make_optim_group(self):
|
716 |
+
group = {"params": list(self.parameters()), "weight_decay": self.weight_decay}
|
717 |
+
if self.lr is not None:
|
718 |
+
group["lr"] = self.lr
|
719 |
+
return group
|
720 |
+
|
721 |
+
|
722 |
+
# Attention Modules
|
723 |
+
|
724 |
+
|
725 |
+
class MultiheadAttention(nn.Module):
|
726 |
+
def __init__(
|
727 |
+
self,
|
728 |
+
embed_dim,
|
729 |
+
num_heads,
|
730 |
+
dropout=0.0,
|
731 |
+
bias=True,
|
732 |
+
add_bias_kv=False,
|
733 |
+
add_zero_attn=False,
|
734 |
+
kdim=None,
|
735 |
+
vdim=None,
|
736 |
+
batch_first=False,
|
737 |
+
auto_sparsity=None,
|
738 |
+
):
|
739 |
+
super().__init__()
|
740 |
+
assert auto_sparsity is not None, "sanity check"
|
741 |
+
self.num_heads = num_heads
|
742 |
+
self.q = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
743 |
+
self.k = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
744 |
+
self.v = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
745 |
+
self.attn_drop = torch.nn.Dropout(dropout)
|
746 |
+
self.proj = torch.nn.Linear(embed_dim, embed_dim, bias)
|
747 |
+
self.proj_drop = torch.nn.Dropout(dropout)
|
748 |
+
self.batch_first = batch_first
|
749 |
+
self.auto_sparsity = auto_sparsity
|
750 |
+
|
751 |
+
def forward(
|
752 |
+
self,
|
753 |
+
query,
|
754 |
+
key,
|
755 |
+
value,
|
756 |
+
key_padding_mask=None,
|
757 |
+
need_weights=True,
|
758 |
+
attn_mask=None,
|
759 |
+
average_attn_weights=True,
|
760 |
+
):
|
761 |
+
|
762 |
+
if not self.batch_first: # N, B, C
|
763 |
+
query = query.permute(1, 0, 2) # B, N_q, C
|
764 |
+
key = key.permute(1, 0, 2) # B, N_k, C
|
765 |
+
value = value.permute(1, 0, 2) # B, N_k, C
|
766 |
+
B, N_q, C = query.shape
|
767 |
+
B, N_k, C = key.shape
|
768 |
+
|
769 |
+
q = (
|
770 |
+
self.q(query)
|
771 |
+
.reshape(B, N_q, self.num_heads, C // self.num_heads)
|
772 |
+
.permute(0, 2, 1, 3)
|
773 |
+
)
|
774 |
+
q = q.flatten(0, 1)
|
775 |
+
k = (
|
776 |
+
self.k(key)
|
777 |
+
.reshape(B, N_k, self.num_heads, C // self.num_heads)
|
778 |
+
.permute(0, 2, 1, 3)
|
779 |
+
)
|
780 |
+
k = k.flatten(0, 1)
|
781 |
+
v = (
|
782 |
+
self.v(value)
|
783 |
+
.reshape(B, N_k, self.num_heads, C // self.num_heads)
|
784 |
+
.permute(0, 2, 1, 3)
|
785 |
+
)
|
786 |
+
v = v.flatten(0, 1)
|
787 |
+
|
788 |
+
if self.auto_sparsity:
|
789 |
+
assert attn_mask is None
|
790 |
+
x = dynamic_sparse_attention(q, k, v, sparsity=self.auto_sparsity)
|
791 |
+
else:
|
792 |
+
x = scaled_dot_product_attention(q, k, v, attn_mask, dropout=self.attn_drop)
|
793 |
+
x = x.reshape(B, self.num_heads, N_q, C // self.num_heads)
|
794 |
+
|
795 |
+
x = x.transpose(1, 2).reshape(B, N_q, C)
|
796 |
+
x = self.proj(x)
|
797 |
+
x = self.proj_drop(x)
|
798 |
+
if not self.batch_first:
|
799 |
+
x = x.permute(1, 0, 2)
|
800 |
+
return x, None
|
801 |
+
|
802 |
+
|
803 |
+
def scaled_query_key_softmax(q, k, att_mask):
|
804 |
+
from xformers.ops import masked_matmul
|
805 |
+
q = q / (k.size(-1)) ** 0.5
|
806 |
+
att = masked_matmul(q, k.transpose(-2, -1), att_mask)
|
807 |
+
att = torch.nn.functional.softmax(att, -1)
|
808 |
+
return att
|
809 |
+
|
810 |
+
|
811 |
+
def scaled_dot_product_attention(q, k, v, att_mask, dropout):
|
812 |
+
att = scaled_query_key_softmax(q, k, att_mask=att_mask)
|
813 |
+
att = dropout(att)
|
814 |
+
y = att @ v
|
815 |
+
return y
|
816 |
+
|
817 |
+
|
818 |
+
def _compute_buckets(x, R):
|
819 |
+
qq = torch.einsum('btf,bfhi->bhti', x, R)
|
820 |
+
qq = torch.cat([qq, -qq], dim=-1)
|
821 |
+
buckets = qq.argmax(dim=-1)
|
822 |
+
|
823 |
+
return buckets.permute(0, 2, 1).byte().contiguous()
|
824 |
+
|
825 |
+
|
826 |
+
def dynamic_sparse_attention(query, key, value, sparsity, infer_sparsity=True, attn_bias=None):
|
827 |
+
# assert False, "The code for the custom sparse kernel is not ready for release yet."
|
828 |
+
from xformers.ops import find_locations, sparse_memory_efficient_attention
|
829 |
+
n_hashes = 32
|
830 |
+
proj_size = 4
|
831 |
+
query, key, value = [x.contiguous() for x in [query, key, value]]
|
832 |
+
with torch.no_grad():
|
833 |
+
R = torch.randn(1, query.shape[-1], n_hashes, proj_size // 2, device=query.device)
|
834 |
+
bucket_query = _compute_buckets(query, R)
|
835 |
+
bucket_key = _compute_buckets(key, R)
|
836 |
+
row_offsets, column_indices = find_locations(
|
837 |
+
bucket_query, bucket_key, sparsity, infer_sparsity)
|
838 |
+
return sparse_memory_efficient_attention(
|
839 |
+
query, key, value, row_offsets, column_indices, attn_bias)
|
demucs4/utils.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from collections import defaultdict
|
8 |
+
from contextlib import contextmanager
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
import tempfile
|
12 |
+
import typing as tp
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from torch.utils.data import Subset
|
17 |
+
|
18 |
+
|
19 |
+
def unfold(a, kernel_size, stride):
|
20 |
+
"""Given input of size [*OT, T], output Tensor of size [*OT, F, K]
|
21 |
+
with K the kernel size, by extracting frames with the given stride.
|
22 |
+
|
23 |
+
This will pad the input so that `F = ceil(T / K)`.
|
24 |
+
|
25 |
+
see https://github.com/pytorch/pytorch/issues/60466
|
26 |
+
"""
|
27 |
+
*shape, length = a.shape
|
28 |
+
n_frames = math.ceil(length / stride)
|
29 |
+
tgt_length = (n_frames - 1) * stride + kernel_size
|
30 |
+
a = F.pad(a, (0, tgt_length - length))
|
31 |
+
strides = list(a.stride())
|
32 |
+
assert strides[-1] == 1, 'data should be contiguous'
|
33 |
+
strides = strides[:-1] + [stride, 1]
|
34 |
+
return a.as_strided([*shape, n_frames, kernel_size], strides)
|
35 |
+
|
36 |
+
|
37 |
+
def center_trim(tensor: torch.Tensor, reference: tp.Union[torch.Tensor, int]):
|
38 |
+
"""
|
39 |
+
Center trim `tensor` with respect to `reference`, along the last dimension.
|
40 |
+
`reference` can also be a number, representing the length to trim to.
|
41 |
+
If the size difference != 0 mod 2, the extra sample is removed on the right side.
|
42 |
+
"""
|
43 |
+
ref_size: int
|
44 |
+
if isinstance(reference, torch.Tensor):
|
45 |
+
ref_size = reference.size(-1)
|
46 |
+
else:
|
47 |
+
ref_size = reference
|
48 |
+
delta = tensor.size(-1) - ref_size
|
49 |
+
if delta < 0:
|
50 |
+
raise ValueError("tensor must be larger than reference. " f"Delta is {delta}.")
|
51 |
+
if delta:
|
52 |
+
tensor = tensor[..., delta // 2:-(delta - delta // 2)]
|
53 |
+
return tensor
|
54 |
+
|
55 |
+
|
56 |
+
def pull_metric(history: tp.List[dict], name: str):
|
57 |
+
out = []
|
58 |
+
for metrics in history:
|
59 |
+
metric = metrics
|
60 |
+
for part in name.split("."):
|
61 |
+
metric = metric[part]
|
62 |
+
out.append(metric)
|
63 |
+
return out
|
64 |
+
|
65 |
+
|
66 |
+
def EMA(beta: float = 1):
|
67 |
+
"""
|
68 |
+
Exponential Moving Average callback.
|
69 |
+
Returns a single function that can be called to repeatidly update the EMA
|
70 |
+
with a dict of metrics. The callback will return
|
71 |
+
the new averaged dict of metrics.
|
72 |
+
|
73 |
+
Note that for `beta=1`, this is just plain averaging.
|
74 |
+
"""
|
75 |
+
fix: tp.Dict[str, float] = defaultdict(float)
|
76 |
+
total: tp.Dict[str, float] = defaultdict(float)
|
77 |
+
|
78 |
+
def _update(metrics: dict, weight: float = 1) -> dict:
|
79 |
+
nonlocal total, fix
|
80 |
+
for key, value in metrics.items():
|
81 |
+
total[key] = total[key] * beta + weight * float(value)
|
82 |
+
fix[key] = fix[key] * beta + weight
|
83 |
+
return {key: tot / fix[key] for key, tot in total.items()}
|
84 |
+
return _update
|
85 |
+
|
86 |
+
|
87 |
+
def sizeof_fmt(num: float, suffix: str = 'B'):
|
88 |
+
"""
|
89 |
+
Given `num` bytes, return human readable size.
|
90 |
+
Taken from https://stackoverflow.com/a/1094933
|
91 |
+
"""
|
92 |
+
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
|
93 |
+
if abs(num) < 1024.0:
|
94 |
+
return "%3.1f%s%s" % (num, unit, suffix)
|
95 |
+
num /= 1024.0
|
96 |
+
return "%.1f%s%s" % (num, 'Yi', suffix)
|
97 |
+
|
98 |
+
|
99 |
+
@contextmanager
|
100 |
+
def temp_filenames(count: int, delete=True):
|
101 |
+
names = []
|
102 |
+
try:
|
103 |
+
for _ in range(count):
|
104 |
+
names.append(tempfile.NamedTemporaryFile(delete=False).name)
|
105 |
+
yield names
|
106 |
+
finally:
|
107 |
+
if delete:
|
108 |
+
for name in names:
|
109 |
+
os.unlink(name)
|
110 |
+
|
111 |
+
|
112 |
+
def random_subset(dataset, max_samples: int, seed: int = 42):
|
113 |
+
if max_samples >= len(dataset):
|
114 |
+
return dataset
|
115 |
+
|
116 |
+
generator = torch.Generator().manual_seed(seed)
|
117 |
+
perm = torch.randperm(len(dataset), generator=generator)
|
118 |
+
return Subset(dataset, perm[:max_samples].tolist())
|
119 |
+
|
120 |
+
|
121 |
+
class DummyPoolExecutor:
|
122 |
+
class DummyResult:
|
123 |
+
def __init__(self, func, *args, **kwargs):
|
124 |
+
self.func = func
|
125 |
+
self.args = args
|
126 |
+
self.kwargs = kwargs
|
127 |
+
|
128 |
+
def result(self):
|
129 |
+
return self.func(*self.args, **self.kwargs)
|
130 |
+
|
131 |
+
def __init__(self, workers=0):
|
132 |
+
pass
|
133 |
+
|
134 |
+
def submit(self, func, *args, **kwargs):
|
135 |
+
return DummyPoolExecutor.DummyResult(func, *args, **kwargs)
|
136 |
+
|
137 |
+
def __enter__(self):
|
138 |
+
return self
|
139 |
+
|
140 |
+
def __exit__(self, exc_type, exc_value, exc_tb):
|
141 |
+
return
|
gui.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
__author__ = 'Roman Solovyev (ZFTurbo), IPPM RAS'
|
3 |
+
|
4 |
+
if __name__ == '__main__':
|
5 |
+
import os
|
6 |
+
|
7 |
+
gpu_use = "0"
|
8 |
+
print('GPU use: {}'.format(gpu_use))
|
9 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)
|
10 |
+
|
11 |
+
import time
|
12 |
+
import os
|
13 |
+
import numpy as np
|
14 |
+
from PyQt5.QtCore import *
|
15 |
+
from PyQt5 import QtCore
|
16 |
+
from PyQt5.QtWidgets import *
|
17 |
+
from PyQt5.QtGui import *
|
18 |
+
import sys
|
19 |
+
from inference import predict_with_model, __VERSION__
|
20 |
+
import torch
|
21 |
+
|
22 |
+
|
23 |
+
root = dict()
|
24 |
+
|
25 |
+
|
26 |
+
class Worker(QObject):
|
27 |
+
finished = pyqtSignal()
|
28 |
+
progress = pyqtSignal(int)
|
29 |
+
|
30 |
+
def __init__(self, options):
|
31 |
+
super().__init__()
|
32 |
+
self.options = options
|
33 |
+
|
34 |
+
def run(self):
|
35 |
+
global root
|
36 |
+
# Here we pass the update_progress (uncalled!)
|
37 |
+
self.options['update_percent_func'] = self.update_progress
|
38 |
+
predict_with_model(self.options)
|
39 |
+
root['button_start'].setDisabled(False)
|
40 |
+
root['button_finish'].setDisabled(True)
|
41 |
+
root['start_proc'] = False
|
42 |
+
self.finished.emit()
|
43 |
+
|
44 |
+
def update_progress(self, percent):
|
45 |
+
self.progress.emit(percent)
|
46 |
+
|
47 |
+
|
48 |
+
class Ui_Dialog(object):
|
49 |
+
def setupUi(self, Dialog):
|
50 |
+
global root
|
51 |
+
|
52 |
+
Dialog.setObjectName("Settings")
|
53 |
+
Dialog.resize(370, 320)
|
54 |
+
|
55 |
+
self.checkbox_cpu = QCheckBox("Use CPU instead of GPU?", Dialog)
|
56 |
+
self.checkbox_cpu.move(30, 10)
|
57 |
+
self.checkbox_cpu.resize(320, 40)
|
58 |
+
if root['cpu']:
|
59 |
+
self.checkbox_cpu.setChecked(True)
|
60 |
+
|
61 |
+
self.checkbox_single_onnx = QCheckBox("Use single ONNX?", Dialog)
|
62 |
+
self.checkbox_single_onnx.move(30, 40)
|
63 |
+
self.checkbox_single_onnx.resize(320, 40)
|
64 |
+
if root['single_onnx']:
|
65 |
+
self.checkbox_single_onnx.setChecked(True)
|
66 |
+
|
67 |
+
self.checkbox_large_gpu = QCheckBox("Use large GPU?", Dialog)
|
68 |
+
self.checkbox_large_gpu.move(30, 70)
|
69 |
+
self.checkbox_large_gpu.resize(320, 40)
|
70 |
+
if root['large_gpu']:
|
71 |
+
self.checkbox_large_gpu.setChecked(True)
|
72 |
+
|
73 |
+
self.checkbox_kim_1 = QCheckBox("Use old Kim Vocal model?", Dialog)
|
74 |
+
self.checkbox_kim_1.move(30, 100)
|
75 |
+
self.checkbox_kim_1.resize(320, 40)
|
76 |
+
if root['use_kim_model_1']:
|
77 |
+
self.checkbox_kim_1.setChecked(True)
|
78 |
+
|
79 |
+
self.checkbox_only_vocals = QCheckBox("Generate only vocals/instrumental?", Dialog)
|
80 |
+
self.checkbox_only_vocals.move(30, 130)
|
81 |
+
self.checkbox_only_vocals.resize(320, 40)
|
82 |
+
if root['only_vocals']:
|
83 |
+
self.checkbox_only_vocals.setChecked(True)
|
84 |
+
|
85 |
+
self.chunk_size_label = QLabel(Dialog)
|
86 |
+
self.chunk_size_label.setText('Chunk size')
|
87 |
+
self.chunk_size_label.move(30, 160)
|
88 |
+
self.chunk_size_label.resize(320, 40)
|
89 |
+
|
90 |
+
self.chunk_size_valid = QIntValidator(bottom=100000, top=10000000)
|
91 |
+
self.chunk_size = QLineEdit(Dialog)
|
92 |
+
self.chunk_size.setFixedWidth(140)
|
93 |
+
self.chunk_size.move(130, 170)
|
94 |
+
self.chunk_size.setValidator(self.chunk_size_valid)
|
95 |
+
self.chunk_size.setText(str(root['chunk_size']))
|
96 |
+
|
97 |
+
self.overlap_large_label = QLabel(Dialog)
|
98 |
+
self.overlap_large_label.setText('Overlap large')
|
99 |
+
self.overlap_large_label.move(30, 190)
|
100 |
+
self.overlap_large_label.resize(320, 40)
|
101 |
+
|
102 |
+
self.overlap_large_valid = QDoubleValidator(bottom=0.001, top=0.999, decimals=10)
|
103 |
+
self.overlap_large_valid.setNotation(QDoubleValidator.Notation.StandardNotation)
|
104 |
+
self.overlap_large = QLineEdit(Dialog)
|
105 |
+
self.overlap_large.setFixedWidth(140)
|
106 |
+
self.overlap_large.move(130, 200)
|
107 |
+
self.overlap_large.setValidator(self.overlap_large_valid)
|
108 |
+
self.overlap_large.setText(str(root['overlap_large']))
|
109 |
+
|
110 |
+
self.overlap_small_label = QLabel(Dialog)
|
111 |
+
self.overlap_small_label.setText('Overlap small')
|
112 |
+
self.overlap_small_label.move(30, 220)
|
113 |
+
self.overlap_small_label.resize(320, 40)
|
114 |
+
|
115 |
+
self.overlap_small_valid = QDoubleValidator(0.001, 0.999, 10)
|
116 |
+
self.overlap_small_valid.setNotation(QDoubleValidator.Notation.StandardNotation)
|
117 |
+
self.overlap_small = QLineEdit(Dialog)
|
118 |
+
self.overlap_small.setFixedWidth(140)
|
119 |
+
self.overlap_small.move(130, 230)
|
120 |
+
self.overlap_small.setValidator(self.overlap_small_valid)
|
121 |
+
self.overlap_small.setText(str(root['overlap_small']))
|
122 |
+
|
123 |
+
self.pushButton_save = QPushButton(Dialog)
|
124 |
+
self.pushButton_save.setObjectName("pushButton_save")
|
125 |
+
self.pushButton_save.move(30, 280)
|
126 |
+
self.pushButton_save.resize(150, 35)
|
127 |
+
|
128 |
+
self.pushButton_cancel = QPushButton(Dialog)
|
129 |
+
self.pushButton_cancel.setObjectName("pushButton_cancel")
|
130 |
+
self.pushButton_cancel.move(190, 280)
|
131 |
+
self.pushButton_cancel.resize(150, 35)
|
132 |
+
|
133 |
+
self.retranslateUi(Dialog)
|
134 |
+
QtCore.QMetaObject.connectSlotsByName(Dialog)
|
135 |
+
self.Dialog = Dialog
|
136 |
+
|
137 |
+
# connect the two functions
|
138 |
+
self.pushButton_save.clicked.connect(self.return_save)
|
139 |
+
self.pushButton_cancel.clicked.connect(self.return_cancel)
|
140 |
+
|
141 |
+
def retranslateUi(self, Dialog):
|
142 |
+
_translate = QtCore.QCoreApplication.translate
|
143 |
+
Dialog.setWindowTitle(_translate("Settings", "Settings"))
|
144 |
+
self.pushButton_cancel.setText(_translate("Settings", "Cancel"))
|
145 |
+
self.pushButton_save.setText(_translate("Settings", "Save settings"))
|
146 |
+
|
147 |
+
def return_save(self):
|
148 |
+
global root
|
149 |
+
# print("save")
|
150 |
+
root['cpu'] = self.checkbox_cpu.isChecked()
|
151 |
+
root['single_onnx'] = self.checkbox_single_onnx.isChecked()
|
152 |
+
root['large_gpu'] = self.checkbox_large_gpu.isChecked()
|
153 |
+
root['use_kim_model_1'] = self.checkbox_kim_1.isChecked()
|
154 |
+
root['only_vocals'] = self.checkbox_only_vocals.isChecked()
|
155 |
+
|
156 |
+
chunk_size_text = self.chunk_size.text()
|
157 |
+
state = self.chunk_size_valid.validate(chunk_size_text, 0)
|
158 |
+
if state[0] == QValidator.State.Acceptable:
|
159 |
+
root['chunk_size'] = chunk_size_text
|
160 |
+
|
161 |
+
overlap_large_text = self.overlap_large.text()
|
162 |
+
# locale problems... it wants comma instead of dot
|
163 |
+
if 0:
|
164 |
+
state = self.overlap_large_valid.validate(overlap_large_text, 0)
|
165 |
+
if state[0] == QValidator.State.Acceptable:
|
166 |
+
root['overlap_large'] = float(overlap_large_text)
|
167 |
+
else:
|
168 |
+
root['overlap_large'] = float(overlap_large_text)
|
169 |
+
|
170 |
+
overlap_small_text = self.overlap_small.text()
|
171 |
+
if 0:
|
172 |
+
state = self.overlap_small_valid.validate(overlap_small_text, 0)
|
173 |
+
if state[0] == QValidator.State.Acceptable:
|
174 |
+
root['overlap_small'] = float(overlap_small_text)
|
175 |
+
else:
|
176 |
+
root['overlap_small'] = float(overlap_small_text)
|
177 |
+
|
178 |
+
self.Dialog.close()
|
179 |
+
|
180 |
+
def return_cancel(self):
|
181 |
+
global root
|
182 |
+
# print("cancel")
|
183 |
+
self.Dialog.close()
|
184 |
+
|
185 |
+
|
186 |
+
class MyWidget(QWidget):
|
187 |
+
def __init__(self):
|
188 |
+
super().__init__()
|
189 |
+
self.initUI()
|
190 |
+
|
191 |
+
def initUI(self):
|
192 |
+
self.resize(560, 360)
|
193 |
+
self.move(300, 300)
|
194 |
+
self.setWindowTitle('MVSEP music separation model')
|
195 |
+
self.setAcceptDrops(True)
|
196 |
+
|
197 |
+
def dragEnterEvent(self, event):
|
198 |
+
if event.mimeData().hasUrls():
|
199 |
+
event.accept()
|
200 |
+
else:
|
201 |
+
event.ignore()
|
202 |
+
|
203 |
+
def dropEvent(self, event):
|
204 |
+
global root
|
205 |
+
files = [u.toLocalFile() for u in event.mimeData().urls()]
|
206 |
+
txt = ''
|
207 |
+
root['input_files'] = []
|
208 |
+
for f in files:
|
209 |
+
root['input_files'].append(f)
|
210 |
+
txt += f + '\n'
|
211 |
+
root['input_files_list_text_area'].insertPlainText(txt)
|
212 |
+
root['progress_bar'].setValue(0)
|
213 |
+
|
214 |
+
def execute_long_task(self):
|
215 |
+
global root
|
216 |
+
|
217 |
+
if len(root['input_files']) == 0 and 1:
|
218 |
+
QMessageBox.about(root['w'], "Error", "No input files specified!")
|
219 |
+
return
|
220 |
+
|
221 |
+
root['progress_bar'].show()
|
222 |
+
root['button_start'].setDisabled(True)
|
223 |
+
root['button_finish'].setDisabled(False)
|
224 |
+
root['start_proc'] = True
|
225 |
+
|
226 |
+
options = {
|
227 |
+
'input_audio': root['input_files'],
|
228 |
+
'output_folder': root['output_folder'],
|
229 |
+
'cpu': root['cpu'],
|
230 |
+
'single_onnx': root['single_onnx'],
|
231 |
+
'large_gpu': root['large_gpu'],
|
232 |
+
'chunk_size': root['chunk_size'],
|
233 |
+
'overlap_large': root['overlap_large'],
|
234 |
+
'overlap_small': root['overlap_small'],
|
235 |
+
'use_kim_model_1': root['use_kim_model_1'],
|
236 |
+
'only_vocals': root['only_vocals'],
|
237 |
+
}
|
238 |
+
|
239 |
+
self.update_progress(0)
|
240 |
+
self.thread = QThread()
|
241 |
+
self.worker = Worker(options)
|
242 |
+
self.worker.moveToThread(self.thread)
|
243 |
+
|
244 |
+
self.thread.started.connect(self.worker.run)
|
245 |
+
self.worker.finished.connect(self.thread.quit)
|
246 |
+
self.worker.finished.connect(self.worker.deleteLater)
|
247 |
+
self.thread.finished.connect(self.thread.deleteLater)
|
248 |
+
self.worker.progress.connect(self.update_progress)
|
249 |
+
|
250 |
+
self.thread.start()
|
251 |
+
|
252 |
+
def stop_separation(self):
|
253 |
+
global root
|
254 |
+
self.thread.terminate()
|
255 |
+
root['button_start'].setDisabled(False)
|
256 |
+
root['button_finish'].setDisabled(True)
|
257 |
+
root['start_proc'] = False
|
258 |
+
root['progress_bar'].hide()
|
259 |
+
|
260 |
+
def update_progress(self, progress):
|
261 |
+
global root
|
262 |
+
root['progress_bar'].setValue(progress)
|
263 |
+
|
264 |
+
def open_settings(self):
|
265 |
+
global root
|
266 |
+
dialog = QDialog()
|
267 |
+
dialog.ui = Ui_Dialog()
|
268 |
+
dialog.ui.setupUi(dialog)
|
269 |
+
dialog.exec_()
|
270 |
+
|
271 |
+
|
272 |
+
def dialog_select_input_files():
|
273 |
+
global root
|
274 |
+
files, _ = QFileDialog.getOpenFileNames(
|
275 |
+
None,
|
276 |
+
"QFileDialog.getOpenFileNames()",
|
277 |
+
"",
|
278 |
+
"All Files (*);;Audio Files (*.wav, *.mp3, *.flac)",
|
279 |
+
)
|
280 |
+
if files:
|
281 |
+
txt = ''
|
282 |
+
root['input_files'] = []
|
283 |
+
for f in files:
|
284 |
+
root['input_files'].append(f)
|
285 |
+
txt += f + '\n'
|
286 |
+
root['input_files_list_text_area'].insertPlainText(txt)
|
287 |
+
root['progress_bar'].setValue(0)
|
288 |
+
return files
|
289 |
+
|
290 |
+
|
291 |
+
def dialog_select_output_folder():
|
292 |
+
global root
|
293 |
+
foldername = QFileDialog.getExistingDirectory(
|
294 |
+
None,
|
295 |
+
"Select Directory"
|
296 |
+
)
|
297 |
+
root['output_folder'] = foldername + '/'
|
298 |
+
root['output_folder_line_edit'].setText(root['output_folder'])
|
299 |
+
return foldername
|
300 |
+
|
301 |
+
|
302 |
+
def create_dialog():
|
303 |
+
global root
|
304 |
+
app = QApplication(sys.argv)
|
305 |
+
|
306 |
+
w = MyWidget()
|
307 |
+
|
308 |
+
root['input_files'] = []
|
309 |
+
root['output_folder'] = os.path.dirname(os.path.abspath(__file__)) + '/results/'
|
310 |
+
root['cpu'] = False
|
311 |
+
root['large_gpu'] = False
|
312 |
+
root['single_onnx'] = False
|
313 |
+
root['chunk_size'] = 1000000
|
314 |
+
root['overlap_large'] = 0.6
|
315 |
+
root['overlap_small'] = 0.5
|
316 |
+
root['use_kim_model_1'] = False
|
317 |
+
root['only_vocals'] = False
|
318 |
+
|
319 |
+
t = torch.cuda.get_device_properties(0).total_memory / (1024 * 1024 * 1024)
|
320 |
+
if t > 11.5:
|
321 |
+
print('You have enough GPU memory ({:.2f} GB), so we set fast GPU mode. You can change in settings!'.format(t))
|
322 |
+
root['large_gpu'] = True
|
323 |
+
root['single_onnx'] = False
|
324 |
+
elif t < 8:
|
325 |
+
root['large_gpu'] = False
|
326 |
+
root['single_onnx'] = True
|
327 |
+
root['chunk_size'] = 500000
|
328 |
+
|
329 |
+
button_select_input_files = QPushButton(w)
|
330 |
+
button_select_input_files.setText("Input audio files")
|
331 |
+
button_select_input_files.clicked.connect(dialog_select_input_files)
|
332 |
+
button_select_input_files.setFixedHeight(35)
|
333 |
+
button_select_input_files.setFixedWidth(150)
|
334 |
+
button_select_input_files.move(30, 20)
|
335 |
+
|
336 |
+
input_files_list_text_area = QTextEdit(w)
|
337 |
+
input_files_list_text_area.setReadOnly(True)
|
338 |
+
input_files_list_text_area.setLineWrapMode(QTextEdit.NoWrap)
|
339 |
+
font = input_files_list_text_area.font()
|
340 |
+
font.setFamily("Courier")
|
341 |
+
font.setPointSize(10)
|
342 |
+
input_files_list_text_area.move(30, 60)
|
343 |
+
input_files_list_text_area.resize(500, 100)
|
344 |
+
|
345 |
+
button_select_output_folder = QPushButton(w)
|
346 |
+
button_select_output_folder.setText("Output folder")
|
347 |
+
button_select_output_folder.setFixedHeight(35)
|
348 |
+
button_select_output_folder.setFixedWidth(150)
|
349 |
+
button_select_output_folder.clicked.connect(dialog_select_output_folder)
|
350 |
+
button_select_output_folder.move(30, 180)
|
351 |
+
|
352 |
+
output_folder_line_edit = QLineEdit(w)
|
353 |
+
output_folder_line_edit.setReadOnly(True)
|
354 |
+
font = output_folder_line_edit.font()
|
355 |
+
font.setFamily("Courier")
|
356 |
+
font.setPointSize(10)
|
357 |
+
output_folder_line_edit.move(30, 220)
|
358 |
+
output_folder_line_edit.setFixedWidth(500)
|
359 |
+
output_folder_line_edit.setText(root['output_folder'])
|
360 |
+
|
361 |
+
progress_bar = QProgressBar(w)
|
362 |
+
# progress_bar.move(30, 310)
|
363 |
+
progress_bar.setValue(0)
|
364 |
+
progress_bar.setGeometry(30, 310, 500, 35)
|
365 |
+
progress_bar.setAlignment(QtCore.Qt.AlignCenter)
|
366 |
+
progress_bar.hide()
|
367 |
+
root['progress_bar'] = progress_bar
|
368 |
+
|
369 |
+
button_start = QPushButton('Start separation', w)
|
370 |
+
button_start.clicked.connect(w.execute_long_task)
|
371 |
+
button_start.setFixedHeight(35)
|
372 |
+
button_start.setFixedWidth(150)
|
373 |
+
button_start.move(30, 270)
|
374 |
+
|
375 |
+
button_finish = QPushButton('Stop separation', w)
|
376 |
+
button_finish.clicked.connect(w.stop_separation)
|
377 |
+
button_finish.setFixedHeight(35)
|
378 |
+
button_finish.setFixedWidth(150)
|
379 |
+
button_finish.move(200, 270)
|
380 |
+
button_finish.setDisabled(True)
|
381 |
+
|
382 |
+
button_settings = QPushButton('⚙', w)
|
383 |
+
button_settings.clicked.connect(w.open_settings)
|
384 |
+
button_settings.setFixedHeight(35)
|
385 |
+
button_settings.setFixedWidth(35)
|
386 |
+
button_settings.move(495, 270)
|
387 |
+
button_settings.setDisabled(False)
|
388 |
+
|
389 |
+
mvsep_link = QLabel(w)
|
390 |
+
mvsep_link.setOpenExternalLinks(True)
|
391 |
+
font = mvsep_link.font()
|
392 |
+
font.setFamily("Courier")
|
393 |
+
font.setPointSize(10)
|
394 |
+
mvsep_link.move(415, 30)
|
395 |
+
mvsep_link.setText('Powered by <a href="https://mvsep.com">MVSep.com</a>')
|
396 |
+
|
397 |
+
root['w'] = w
|
398 |
+
root['input_files_list_text_area'] = input_files_list_text_area
|
399 |
+
root['output_folder_line_edit'] = output_folder_line_edit
|
400 |
+
root['button_start'] = button_start
|
401 |
+
root['button_finish'] = button_finish
|
402 |
+
root['button_settings'] = button_settings
|
403 |
+
|
404 |
+
# w.showMaximized()
|
405 |
+
w.show()
|
406 |
+
sys.exit(app.exec_())
|
407 |
+
|
408 |
+
|
409 |
+
if __name__ == '__main__':
|
410 |
+
print('Version: {}'.format(__VERSION__))
|
411 |
+
create_dialog()
|
images/MVSep-Window.png
ADDED
![]() |
inference.py
ADDED
@@ -0,0 +1,920 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
__author__ = 'https://github.com/ZFTurbo/'
|
3 |
+
|
4 |
+
if __name__ == '__main__':
|
5 |
+
import os
|
6 |
+
|
7 |
+
gpu_use = "0"
|
8 |
+
print('GPU use: {}'.format(gpu_use))
|
9 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)
|
10 |
+
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import os
|
16 |
+
import argparse
|
17 |
+
import soundfile as sf
|
18 |
+
|
19 |
+
from demucs.states import load_model
|
20 |
+
from demucs import pretrained
|
21 |
+
from demucs.apply import apply_model
|
22 |
+
import onnxruntime as ort
|
23 |
+
from time import time
|
24 |
+
import librosa
|
25 |
+
import hashlib
|
26 |
+
|
27 |
+
|
28 |
+
__VERSION__ = '1.0.1'
|
29 |
+
|
30 |
+
|
31 |
+
class Conv_TDF_net_trim_model(nn.Module):
|
32 |
+
def __init__(self, device, target_name, L, n_fft, hop=1024):
|
33 |
+
|
34 |
+
super(Conv_TDF_net_trim_model, self).__init__()
|
35 |
+
|
36 |
+
self.dim_c = 4
|
37 |
+
self.dim_f, self.dim_t = 3072, 256
|
38 |
+
self.n_fft = n_fft
|
39 |
+
self.hop = hop
|
40 |
+
self.n_bins = self.n_fft // 2 + 1
|
41 |
+
self.chunk_size = hop * (self.dim_t - 1)
|
42 |
+
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
|
43 |
+
self.target_name = target_name
|
44 |
+
|
45 |
+
out_c = self.dim_c * 4 if target_name == '*' else self.dim_c
|
46 |
+
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
|
47 |
+
|
48 |
+
self.n = L // 2
|
49 |
+
|
50 |
+
def stft(self, x):
|
51 |
+
x = x.reshape([-1, self.chunk_size])
|
52 |
+
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
|
53 |
+
x = torch.view_as_real(x)
|
54 |
+
x = x.permute([0, 3, 1, 2])
|
55 |
+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, self.dim_c, self.n_bins, self.dim_t])
|
56 |
+
return x[:, :, :self.dim_f]
|
57 |
+
|
58 |
+
def istft(self, x, freq_pad=None):
|
59 |
+
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
|
60 |
+
x = torch.cat([x, freq_pad], -2)
|
61 |
+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
|
62 |
+
x = x.permute([0, 2, 3, 1])
|
63 |
+
x = x.contiguous()
|
64 |
+
x = torch.view_as_complex(x)
|
65 |
+
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
|
66 |
+
return x.reshape([-1, 2, self.chunk_size])
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = self.first_conv(x)
|
70 |
+
x = x.transpose(-1, -2)
|
71 |
+
|
72 |
+
ds_outputs = []
|
73 |
+
for i in range(self.n):
|
74 |
+
x = self.ds_dense[i](x)
|
75 |
+
ds_outputs.append(x)
|
76 |
+
x = self.ds[i](x)
|
77 |
+
|
78 |
+
x = self.mid_dense(x)
|
79 |
+
for i in range(self.n):
|
80 |
+
x = self.us[i](x)
|
81 |
+
x *= ds_outputs[-i - 1]
|
82 |
+
x = self.us_dense[i](x)
|
83 |
+
|
84 |
+
x = x.transpose(-1, -2)
|
85 |
+
x = self.final_conv(x)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
def get_models(name, device, load=True, vocals_model_type=0):
|
90 |
+
if vocals_model_type == 2:
|
91 |
+
model_vocals = Conv_TDF_net_trim_model(
|
92 |
+
device=device,
|
93 |
+
target_name='vocals',
|
94 |
+
L=11,
|
95 |
+
n_fft=7680
|
96 |
+
)
|
97 |
+
elif vocals_model_type == 3:
|
98 |
+
model_vocals = Conv_TDF_net_trim_model(
|
99 |
+
device=device,
|
100 |
+
target_name='vocals',
|
101 |
+
L=11,
|
102 |
+
n_fft=6144
|
103 |
+
)
|
104 |
+
|
105 |
+
return [model_vocals]
|
106 |
+
|
107 |
+
|
108 |
+
def demix_base(mix, device, models, infer_session):
|
109 |
+
start_time = time()
|
110 |
+
sources = []
|
111 |
+
n_sample = mix.shape[1]
|
112 |
+
for model in models:
|
113 |
+
trim = model.n_fft // 2
|
114 |
+
gen_size = model.chunk_size - 2 * trim
|
115 |
+
pad = gen_size - n_sample % gen_size
|
116 |
+
mix_p = np.concatenate(
|
117 |
+
(
|
118 |
+
np.zeros((2, trim)),
|
119 |
+
mix,
|
120 |
+
np.zeros((2, pad)),
|
121 |
+
np.zeros((2, trim))
|
122 |
+
), 1
|
123 |
+
)
|
124 |
+
|
125 |
+
mix_waves = []
|
126 |
+
i = 0
|
127 |
+
while i < n_sample + pad:
|
128 |
+
waves = np.array(mix_p[:, i:i + model.chunk_size])
|
129 |
+
mix_waves.append(waves)
|
130 |
+
i += gen_size
|
131 |
+
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(device)
|
132 |
+
|
133 |
+
with torch.no_grad():
|
134 |
+
_ort = infer_session
|
135 |
+
stft_res = model.stft(mix_waves)
|
136 |
+
res = _ort.run(None, {'input': stft_res.cpu().numpy()})[0]
|
137 |
+
ten = torch.tensor(res)
|
138 |
+
tar_waves = model.istft(ten.to(device))
|
139 |
+
tar_waves = tar_waves.cpu()
|
140 |
+
tar_signal = tar_waves[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).numpy()[:, :-pad]
|
141 |
+
|
142 |
+
sources.append(tar_signal)
|
143 |
+
# print('Time demix base: {:.2f} sec'.format(time() - start_time))
|
144 |
+
return np.array(sources)
|
145 |
+
|
146 |
+
|
147 |
+
def demix_full(mix, device, chunk_size, models, infer_session, overlap=0.75):
|
148 |
+
start_time = time()
|
149 |
+
|
150 |
+
step = int(chunk_size * (1 - overlap))
|
151 |
+
# print('Initial shape: {} Chunk size: {} Step: {} Device: {}'.format(mix.shape, chunk_size, step, device))
|
152 |
+
result = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32)
|
153 |
+
divider = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32)
|
154 |
+
|
155 |
+
total = 0
|
156 |
+
for i in range(0, mix.shape[-1], step):
|
157 |
+
total += 1
|
158 |
+
|
159 |
+
start = i
|
160 |
+
end = min(i + chunk_size, mix.shape[-1])
|
161 |
+
# print('Chunk: {} Start: {} End: {}'.format(total, start, end))
|
162 |
+
mix_part = mix[:, start:end]
|
163 |
+
sources = demix_base(mix_part, device, models, infer_session)
|
164 |
+
# print(sources.shape)
|
165 |
+
result[..., start:end] += sources
|
166 |
+
divider[..., start:end] += 1
|
167 |
+
sources = result / divider
|
168 |
+
# print('Final shape: {} Overall time: {:.2f}'.format(sources.shape, time() - start_time))
|
169 |
+
return sources
|
170 |
+
|
171 |
+
|
172 |
+
class EnsembleDemucsMDXMusicSeparationModel:
|
173 |
+
"""
|
174 |
+
Doesn't do any separation just passes the input back as output
|
175 |
+
"""
|
176 |
+
def __init__(self, options):
|
177 |
+
"""
|
178 |
+
options - user options
|
179 |
+
"""
|
180 |
+
# print(options)
|
181 |
+
|
182 |
+
if torch.cuda.is_available():
|
183 |
+
device = 'cuda:0'
|
184 |
+
else:
|
185 |
+
device = 'cpu'
|
186 |
+
if 'cpu' in options:
|
187 |
+
if options['cpu']:
|
188 |
+
device = 'cpu'
|
189 |
+
print('Use device: {}'.format(device))
|
190 |
+
self.single_onnx = False
|
191 |
+
if 'single_onnx' in options:
|
192 |
+
if options['single_onnx']:
|
193 |
+
self.single_onnx = True
|
194 |
+
print('Use single vocal ONNX')
|
195 |
+
|
196 |
+
self.kim_model_1 = False
|
197 |
+
if 'use_kim_model_1' in options:
|
198 |
+
if options['use_kim_model_1']:
|
199 |
+
self.kim_model_1 = True
|
200 |
+
if self.kim_model_1:
|
201 |
+
print('Use Kim model 1')
|
202 |
+
else:
|
203 |
+
print('Use Kim model 2')
|
204 |
+
|
205 |
+
self.overlap_large = float(options['overlap_large'])
|
206 |
+
self.overlap_small = float(options['overlap_small'])
|
207 |
+
if self.overlap_large > 0.99:
|
208 |
+
self.overlap_large = 0.99
|
209 |
+
if self.overlap_large < 0.0:
|
210 |
+
self.overlap_large = 0.0
|
211 |
+
if self.overlap_small > 0.99:
|
212 |
+
self.overlap_small = 0.99
|
213 |
+
if self.overlap_small < 0.0:
|
214 |
+
self.overlap_small = 0.0
|
215 |
+
|
216 |
+
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/'
|
217 |
+
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th'
|
218 |
+
model_path = model_folder + '04573f0d-f3cf25b2.th'
|
219 |
+
if not os.path.isfile(model_path):
|
220 |
+
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th')
|
221 |
+
model_vocals = load_model(model_path)
|
222 |
+
model_vocals.to(device)
|
223 |
+
self.model_vocals_only = model_vocals
|
224 |
+
|
225 |
+
self.models = []
|
226 |
+
self.weights_vocals = np.array([10, 1, 8, 9])
|
227 |
+
self.weights_bass = np.array([19, 4, 5, 8])
|
228 |
+
self.weights_drums = np.array([18, 2, 4, 9])
|
229 |
+
self.weights_other = np.array([14, 2, 5, 10])
|
230 |
+
|
231 |
+
model1 = pretrained.get_model('htdemucs_ft')
|
232 |
+
model1.to(device)
|
233 |
+
self.models.append(model1)
|
234 |
+
|
235 |
+
model2 = pretrained.get_model('htdemucs')
|
236 |
+
model2.to(device)
|
237 |
+
self.models.append(model2)
|
238 |
+
|
239 |
+
model3 = pretrained.get_model('htdemucs_6s')
|
240 |
+
model3.to(device)
|
241 |
+
self.models.append(model3)
|
242 |
+
|
243 |
+
model4 = pretrained.get_model('hdemucs_mmi')
|
244 |
+
model4.to(device)
|
245 |
+
self.models.append(model4)
|
246 |
+
|
247 |
+
if 0:
|
248 |
+
for model in self.models:
|
249 |
+
print(model.sources)
|
250 |
+
'''
|
251 |
+
['drums', 'bass', 'other', 'vocals']
|
252 |
+
['drums', 'bass', 'other', 'vocals']
|
253 |
+
['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
|
254 |
+
['drums', 'bass', 'other', 'vocals']
|
255 |
+
'''
|
256 |
+
|
257 |
+
if device == 'cpu':
|
258 |
+
chunk_size = 200000000
|
259 |
+
providers = ["CPUExecutionProvider"]
|
260 |
+
else:
|
261 |
+
chunk_size = 1000000
|
262 |
+
providers = ["CUDAExecutionProvider"]
|
263 |
+
if 'chunk_size' in options:
|
264 |
+
chunk_size = int(options['chunk_size'])
|
265 |
+
|
266 |
+
# MDX-B model 1 initialization
|
267 |
+
self.chunk_size = chunk_size
|
268 |
+
self.mdx_models1 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2)
|
269 |
+
if self.kim_model_1:
|
270 |
+
model_path_onnx1 = model_folder + 'Kim_Vocal_1.onnx'
|
271 |
+
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_1.onnx'
|
272 |
+
else:
|
273 |
+
model_path_onnx1 = model_folder + 'Kim_Vocal_2.onnx'
|
274 |
+
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_2.onnx'
|
275 |
+
if not os.path.isfile(model_path_onnx1):
|
276 |
+
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1)
|
277 |
+
print('Model path: {}'.format(model_path_onnx1))
|
278 |
+
print('Device: {} Chunk size: {}'.format(device, chunk_size))
|
279 |
+
self.infer_session1 = ort.InferenceSession(
|
280 |
+
model_path_onnx1,
|
281 |
+
providers=providers,
|
282 |
+
provider_options=[{"device_id": 0}],
|
283 |
+
)
|
284 |
+
|
285 |
+
if self.single_onnx is False:
|
286 |
+
# MDX-B model 2 initialization
|
287 |
+
self.chunk_size = chunk_size
|
288 |
+
self.mdx_models2 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2)
|
289 |
+
root_path = os.path.dirname(os.path.realpath(__file__)) + '/'
|
290 |
+
model_path_onnx2 = model_folder + 'Kim_Inst.onnx'
|
291 |
+
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Inst.onnx'
|
292 |
+
if not os.path.isfile(model_path_onnx2):
|
293 |
+
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2)
|
294 |
+
print('Model path: {}'.format(model_path_onnx2))
|
295 |
+
print('Device: {} Chunk size: {}'.format(device, chunk_size))
|
296 |
+
self.infer_session2 = ort.InferenceSession(
|
297 |
+
model_path_onnx2,
|
298 |
+
providers=providers,
|
299 |
+
provider_options=[{"device_id": 0}],
|
300 |
+
)
|
301 |
+
|
302 |
+
self.device = device
|
303 |
+
pass
|
304 |
+
|
305 |
+
@property
|
306 |
+
def instruments(self):
|
307 |
+
""" DO NOT CHANGE """
|
308 |
+
return ['bass', 'drums', 'other', 'vocals']
|
309 |
+
|
310 |
+
def raise_aicrowd_error(self, msg):
|
311 |
+
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
|
312 |
+
raise NameError(msg)
|
313 |
+
|
314 |
+
def separate_music_file(
|
315 |
+
self,
|
316 |
+
mixed_sound_array,
|
317 |
+
sample_rate,
|
318 |
+
update_percent_func=None,
|
319 |
+
current_file_number=0,
|
320 |
+
total_files=0,
|
321 |
+
only_vocals=False,
|
322 |
+
):
|
323 |
+
"""
|
324 |
+
Implements the sound separation for a single sound file
|
325 |
+
Inputs: Outputs from soundfile.read('mixture.wav')
|
326 |
+
mixed_sound_array
|
327 |
+
sample_rate
|
328 |
+
|
329 |
+
Outputs:
|
330 |
+
separated_music_arrays: Dictionary numpy array of each separated instrument
|
331 |
+
output_sample_rates: Dictionary of sample rates separated sequence
|
332 |
+
"""
|
333 |
+
|
334 |
+
# print('Update percent func: {}'.format(update_percent_func))
|
335 |
+
|
336 |
+
separated_music_arrays = {}
|
337 |
+
output_sample_rates = {}
|
338 |
+
|
339 |
+
audio = np.expand_dims(mixed_sound_array.T, axis=0)
|
340 |
+
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
|
341 |
+
|
342 |
+
overlap_large = self.overlap_large
|
343 |
+
overlap_small = self.overlap_small
|
344 |
+
|
345 |
+
# Get Demics vocal only
|
346 |
+
model = self.model_vocals_only
|
347 |
+
shifts = 1
|
348 |
+
overlap = overlap_large
|
349 |
+
vocals_demucs = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
|
350 |
+
|
351 |
+
if update_percent_func is not None:
|
352 |
+
val = 100 * (current_file_number + 0.10) / total_files
|
353 |
+
update_percent_func(int(val))
|
354 |
+
|
355 |
+
vocals_demucs += 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
|
356 |
+
|
357 |
+
if update_percent_func is not None:
|
358 |
+
val = 100 * (current_file_number + 0.20) / total_files
|
359 |
+
update_percent_func(int(val))
|
360 |
+
|
361 |
+
overlap = overlap_large
|
362 |
+
sources1 = demix_full(
|
363 |
+
mixed_sound_array.T,
|
364 |
+
self.device,
|
365 |
+
self.chunk_size,
|
366 |
+
self.mdx_models1,
|
367 |
+
self.infer_session1,
|
368 |
+
overlap=overlap
|
369 |
+
)[0]
|
370 |
+
|
371 |
+
vocals_mdxb1 = sources1
|
372 |
+
|
373 |
+
if update_percent_func is not None:
|
374 |
+
val = 100 * (current_file_number + 0.30) / total_files
|
375 |
+
update_percent_func(int(val))
|
376 |
+
|
377 |
+
if self.single_onnx is False:
|
378 |
+
sources2 = -demix_full(
|
379 |
+
-mixed_sound_array.T,
|
380 |
+
self.device,
|
381 |
+
self.chunk_size,
|
382 |
+
self.mdx_models2,
|
383 |
+
self.infer_session2,
|
384 |
+
overlap=overlap
|
385 |
+
)[0]
|
386 |
+
|
387 |
+
# it's instrumental so need to invert
|
388 |
+
instrum_mdxb2 = sources2
|
389 |
+
vocals_mdxb2 = mixed_sound_array.T - instrum_mdxb2
|
390 |
+
|
391 |
+
if update_percent_func is not None:
|
392 |
+
val = 100 * (current_file_number + 0.40) / total_files
|
393 |
+
update_percent_func(int(val))
|
394 |
+
|
395 |
+
# Ensemble vocals for MDX and Demucs
|
396 |
+
if self.single_onnx is False:
|
397 |
+
weights = np.array([12, 8, 3])
|
398 |
+
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_mdxb2.T + weights[2] * vocals_demucs.T) / weights.sum()
|
399 |
+
else:
|
400 |
+
weights = np.array([6, 1])
|
401 |
+
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_demucs.T) / weights.sum()
|
402 |
+
|
403 |
+
# vocals
|
404 |
+
separated_music_arrays['vocals'] = vocals
|
405 |
+
output_sample_rates['vocals'] = sample_rate
|
406 |
+
|
407 |
+
if not only_vocals:
|
408 |
+
# Generate instrumental
|
409 |
+
instrum = mixed_sound_array - vocals
|
410 |
+
|
411 |
+
audio = np.expand_dims(instrum.T, axis=0)
|
412 |
+
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
|
413 |
+
|
414 |
+
all_outs = []
|
415 |
+
for i, model in enumerate(self.models):
|
416 |
+
if i == 0:
|
417 |
+
overlap = overlap_small
|
418 |
+
elif i > 0:
|
419 |
+
overlap = overlap_large
|
420 |
+
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
|
421 |
+
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
|
422 |
+
|
423 |
+
if update_percent_func is not None:
|
424 |
+
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
|
425 |
+
update_percent_func(int(val))
|
426 |
+
|
427 |
+
if i == 2:
|
428 |
+
# ['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
|
429 |
+
out[2] = out[2] + out[4] + out[5]
|
430 |
+
out = out[:4]
|
431 |
+
|
432 |
+
out[0] = self.weights_drums[i] * out[0]
|
433 |
+
out[1] = self.weights_bass[i] * out[1]
|
434 |
+
out[2] = self.weights_other[i] * out[2]
|
435 |
+
out[3] = self.weights_vocals[i] * out[3]
|
436 |
+
|
437 |
+
all_outs.append(out)
|
438 |
+
out = np.array(all_outs).sum(axis=0)
|
439 |
+
out[0] = out[0] / self.weights_drums.sum()
|
440 |
+
out[1] = out[1] / self.weights_bass.sum()
|
441 |
+
out[2] = out[2] / self.weights_other.sum()
|
442 |
+
out[3] = out[3] / self.weights_vocals.sum()
|
443 |
+
|
444 |
+
# other
|
445 |
+
res = mixed_sound_array - vocals - out[0].T - out[1].T
|
446 |
+
res = np.clip(res, -1, 1)
|
447 |
+
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0
|
448 |
+
output_sample_rates['other'] = sample_rate
|
449 |
+
|
450 |
+
# drums
|
451 |
+
res = mixed_sound_array - vocals - out[1].T - out[2].T
|
452 |
+
res = np.clip(res, -1, 1)
|
453 |
+
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0
|
454 |
+
output_sample_rates['drums'] = sample_rate
|
455 |
+
|
456 |
+
# bass
|
457 |
+
res = mixed_sound_array - vocals - out[0].T - out[2].T
|
458 |
+
res = np.clip(res, -1, 1)
|
459 |
+
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0
|
460 |
+
output_sample_rates['bass'] = sample_rate
|
461 |
+
|
462 |
+
bass = separated_music_arrays['bass']
|
463 |
+
drums = separated_music_arrays['drums']
|
464 |
+
other = separated_music_arrays['other']
|
465 |
+
|
466 |
+
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums
|
467 |
+
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other
|
468 |
+
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other
|
469 |
+
|
470 |
+
if update_percent_func is not None:
|
471 |
+
val = 100 * (current_file_number + 0.95) / total_files
|
472 |
+
update_percent_func(int(val))
|
473 |
+
|
474 |
+
return separated_music_arrays, output_sample_rates
|
475 |
+
|
476 |
+
|
477 |
+
class EnsembleDemucsMDXMusicSeparationModelLowGPU:
|
478 |
+
"""
|
479 |
+
Doesn't do any separation just passes the input back as output
|
480 |
+
"""
|
481 |
+
|
482 |
+
def __init__(self, options):
|
483 |
+
"""
|
484 |
+
options - user options
|
485 |
+
"""
|
486 |
+
# print(options)
|
487 |
+
|
488 |
+
if torch.cuda.is_available():
|
489 |
+
device = 'cuda:0'
|
490 |
+
else:
|
491 |
+
device = 'cpu'
|
492 |
+
if 'cpu' in options:
|
493 |
+
if options['cpu']:
|
494 |
+
device = 'cpu'
|
495 |
+
print('Use device: {}'.format(device))
|
496 |
+
self.single_onnx = False
|
497 |
+
if 'single_onnx' in options:
|
498 |
+
if options['single_onnx']:
|
499 |
+
self.single_onnx = True
|
500 |
+
print('Use single vocal ONNX')
|
501 |
+
|
502 |
+
self.kim_model_1 = False
|
503 |
+
if 'use_kim_model_1' in options:
|
504 |
+
if options['use_kim_model_1']:
|
505 |
+
self.kim_model_1 = True
|
506 |
+
if self.kim_model_1:
|
507 |
+
print('Use Kim model 1')
|
508 |
+
else:
|
509 |
+
print('Use Kim model 2')
|
510 |
+
|
511 |
+
self.overlap_large = float(options['overlap_large'])
|
512 |
+
self.overlap_small = float(options['overlap_small'])
|
513 |
+
if self.overlap_large > 0.99:
|
514 |
+
self.overlap_large = 0.99
|
515 |
+
if self.overlap_large < 0.0:
|
516 |
+
self.overlap_large = 0.0
|
517 |
+
if self.overlap_small > 0.99:
|
518 |
+
self.overlap_small = 0.99
|
519 |
+
if self.overlap_small < 0.0:
|
520 |
+
self.overlap_small = 0.0
|
521 |
+
|
522 |
+
self.weights_vocals = np.array([10, 1, 8, 9])
|
523 |
+
self.weights_bass = np.array([19, 4, 5, 8])
|
524 |
+
self.weights_drums = np.array([18, 2, 4, 9])
|
525 |
+
self.weights_other = np.array([14, 2, 5, 10])
|
526 |
+
|
527 |
+
if device == 'cpu':
|
528 |
+
chunk_size = 200000000
|
529 |
+
self.providers = ["CPUExecutionProvider"]
|
530 |
+
else:
|
531 |
+
chunk_size = 1000000
|
532 |
+
self.providers = ["CUDAExecutionProvider"]
|
533 |
+
if 'chunk_size' in options:
|
534 |
+
chunk_size = int(options['chunk_size'])
|
535 |
+
self.chunk_size = chunk_size
|
536 |
+
self.device = device
|
537 |
+
pass
|
538 |
+
|
539 |
+
@property
|
540 |
+
def instruments(self):
|
541 |
+
""" DO NOT CHANGE """
|
542 |
+
return ['bass', 'drums', 'other', 'vocals']
|
543 |
+
|
544 |
+
def raise_aicrowd_error(self, msg):
|
545 |
+
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
|
546 |
+
raise NameError(msg)
|
547 |
+
|
548 |
+
def separate_music_file(
|
549 |
+
self,
|
550 |
+
mixed_sound_array,
|
551 |
+
sample_rate,
|
552 |
+
update_percent_func=None,
|
553 |
+
current_file_number=0,
|
554 |
+
total_files=0,
|
555 |
+
only_vocals=False
|
556 |
+
):
|
557 |
+
"""
|
558 |
+
Implements the sound separation for a single sound file
|
559 |
+
Inputs: Outputs from soundfile.read('mixture.wav')
|
560 |
+
mixed_sound_array
|
561 |
+
sample_rate
|
562 |
+
|
563 |
+
Outputs:
|
564 |
+
separated_music_arrays: Dictionary numpy array of each separated instrument
|
565 |
+
output_sample_rates: Dictionary of sample rates separated sequence
|
566 |
+
"""
|
567 |
+
|
568 |
+
# print('Update percent func: {}'.format(update_percent_func))
|
569 |
+
|
570 |
+
separated_music_arrays = {}
|
571 |
+
output_sample_rates = {}
|
572 |
+
|
573 |
+
audio = np.expand_dims(mixed_sound_array.T, axis=0)
|
574 |
+
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
|
575 |
+
|
576 |
+
overlap_large = self.overlap_large
|
577 |
+
overlap_small = self.overlap_small
|
578 |
+
|
579 |
+
# Get Demucs vocal only
|
580 |
+
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/'
|
581 |
+
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th'
|
582 |
+
model_path = model_folder + '04573f0d-f3cf25b2.th'
|
583 |
+
if not os.path.isfile(model_path):
|
584 |
+
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th')
|
585 |
+
model_vocals = load_model(model_path)
|
586 |
+
model_vocals.to(self.device)
|
587 |
+
shifts = 1
|
588 |
+
overlap = overlap_large
|
589 |
+
vocals_demucs = 0.5 * apply_model(model_vocals, audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
|
590 |
+
|
591 |
+
if update_percent_func is not None:
|
592 |
+
val = 100 * (current_file_number + 0.10) / total_files
|
593 |
+
update_percent_func(int(val))
|
594 |
+
|
595 |
+
vocals_demucs += 0.5 * -apply_model(model_vocals, -audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
|
596 |
+
model_vocals = model_vocals.cpu()
|
597 |
+
del model_vocals
|
598 |
+
|
599 |
+
if update_percent_func is not None:
|
600 |
+
val = 100 * (current_file_number + 0.20) / total_files
|
601 |
+
update_percent_func(int(val))
|
602 |
+
|
603 |
+
# MDX-B model 1 initialization
|
604 |
+
mdx_models1 = get_models('tdf_extra', load=False, device=self.device, vocals_model_type=2)
|
605 |
+
if self.kim_model_1:
|
606 |
+
model_path_onnx1 = model_folder + 'Kim_Vocal_1.onnx'
|
607 |
+
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_1.onnx'
|
608 |
+
else:
|
609 |
+
model_path_onnx1 = model_folder + 'Kim_Vocal_2.onnx'
|
610 |
+
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_2.onnx'
|
611 |
+
if not os.path.isfile(model_path_onnx1):
|
612 |
+
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1)
|
613 |
+
print('Model path: {}'.format(model_path_onnx1))
|
614 |
+
print('Device: {} Chunk size: {}'.format(self.device, self.chunk_size))
|
615 |
+
infer_session1 = ort.InferenceSession(
|
616 |
+
model_path_onnx1,
|
617 |
+
providers=self.providers,
|
618 |
+
provider_options=[{"device_id": 0}],
|
619 |
+
)
|
620 |
+
overlap = overlap_large
|
621 |
+
sources1 = demix_full(
|
622 |
+
mixed_sound_array.T,
|
623 |
+
self.device,
|
624 |
+
self.chunk_size,
|
625 |
+
mdx_models1,
|
626 |
+
infer_session1,
|
627 |
+
overlap=overlap
|
628 |
+
)[0]
|
629 |
+
vocals_mdxb1 = sources1
|
630 |
+
del infer_session1
|
631 |
+
del mdx_models1
|
632 |
+
|
633 |
+
if update_percent_func is not None:
|
634 |
+
val = 100 * (current_file_number + 0.30) / total_files
|
635 |
+
update_percent_func(int(val))
|
636 |
+
|
637 |
+
if self.single_onnx is False:
|
638 |
+
# MDX-B model 2 initialization
|
639 |
+
mdx_models2 = get_models('tdf_extra', load=False, device=self.device, vocals_model_type=2)
|
640 |
+
root_path = os.path.dirname(os.path.realpath(__file__)) + '/'
|
641 |
+
model_path_onnx2 = model_folder + 'Kim_Inst.onnx'
|
642 |
+
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Inst.onnx'
|
643 |
+
if not os.path.isfile(model_path_onnx2):
|
644 |
+
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2)
|
645 |
+
print('Model path: {}'.format(model_path_onnx2))
|
646 |
+
print('Device: {} Chunk size: {}'.format(self.device, self.chunk_size))
|
647 |
+
infer_session2 = ort.InferenceSession(
|
648 |
+
model_path_onnx2,
|
649 |
+
providers=self.providers,
|
650 |
+
provider_options=[{"device_id": 0}],
|
651 |
+
)
|
652 |
+
|
653 |
+
overlap = overlap_large
|
654 |
+
sources2 = -demix_full(
|
655 |
+
-mixed_sound_array.T,
|
656 |
+
self.device,
|
657 |
+
self.chunk_size,
|
658 |
+
mdx_models2,
|
659 |
+
infer_session2,
|
660 |
+
overlap=overlap
|
661 |
+
)[0]
|
662 |
+
|
663 |
+
# it's instrumental so need to invert
|
664 |
+
instrum_mdxb2 = sources2
|
665 |
+
vocals_mdxb2 = mixed_sound_array.T - instrum_mdxb2
|
666 |
+
del infer_session2
|
667 |
+
del mdx_models2
|
668 |
+
|
669 |
+
if update_percent_func is not None:
|
670 |
+
val = 100 * (current_file_number + 0.40) / total_files
|
671 |
+
update_percent_func(int(val))
|
672 |
+
|
673 |
+
# Ensemble vocals for MDX and Demucs
|
674 |
+
if self.single_onnx is False:
|
675 |
+
weights = np.array([12, 8, 3])
|
676 |
+
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_mdxb2.T + weights[2] * vocals_demucs.T) / weights.sum()
|
677 |
+
else:
|
678 |
+
weights = np.array([6, 1])
|
679 |
+
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_demucs.T) / weights.sum()
|
680 |
+
|
681 |
+
# Generate instrumental
|
682 |
+
instrum = mixed_sound_array - vocals
|
683 |
+
|
684 |
+
audio = np.expand_dims(instrum.T, axis=0)
|
685 |
+
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
|
686 |
+
|
687 |
+
all_outs = []
|
688 |
+
|
689 |
+
i = 0
|
690 |
+
overlap = overlap_small
|
691 |
+
model = pretrained.get_model('htdemucs_ft')
|
692 |
+
model.to(self.device)
|
693 |
+
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
|
694 |
+
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
|
695 |
+
|
696 |
+
if update_percent_func is not None:
|
697 |
+
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
|
698 |
+
update_percent_func(int(val))
|
699 |
+
|
700 |
+
out[0] = self.weights_drums[i] * out[0]
|
701 |
+
out[1] = self.weights_bass[i] * out[1]
|
702 |
+
out[2] = self.weights_other[i] * out[2]
|
703 |
+
out[3] = self.weights_vocals[i] * out[3]
|
704 |
+
all_outs.append(out)
|
705 |
+
model = model.cpu()
|
706 |
+
del model
|
707 |
+
|
708 |
+
i = 1
|
709 |
+
overlap = overlap_large
|
710 |
+
model = pretrained.get_model('htdemucs')
|
711 |
+
model.to(self.device)
|
712 |
+
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
|
713 |
+
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
|
714 |
+
|
715 |
+
if update_percent_func is not None:
|
716 |
+
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
|
717 |
+
update_percent_func(int(val))
|
718 |
+
|
719 |
+
out[0] = self.weights_drums[i] * out[0]
|
720 |
+
out[1] = self.weights_bass[i] * out[1]
|
721 |
+
out[2] = self.weights_other[i] * out[2]
|
722 |
+
out[3] = self.weights_vocals[i] * out[3]
|
723 |
+
all_outs.append(out)
|
724 |
+
model = model.cpu()
|
725 |
+
del model
|
726 |
+
|
727 |
+
i = 2
|
728 |
+
overlap = overlap_large
|
729 |
+
model = pretrained.get_model('htdemucs_6s')
|
730 |
+
model.to(self.device)
|
731 |
+
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
|
732 |
+
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
|
733 |
+
|
734 |
+
if update_percent_func is not None:
|
735 |
+
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
|
736 |
+
update_percent_func(int(val))
|
737 |
+
|
738 |
+
# More stems need to add
|
739 |
+
out[2] = out[2] + out[4] + out[5]
|
740 |
+
out = out[:4]
|
741 |
+
out[0] = self.weights_drums[i] * out[0]
|
742 |
+
out[1] = self.weights_bass[i] * out[1]
|
743 |
+
out[2] = self.weights_other[i] * out[2]
|
744 |
+
out[3] = self.weights_vocals[i] * out[3]
|
745 |
+
all_outs.append(out)
|
746 |
+
model = model.cpu()
|
747 |
+
del model
|
748 |
+
|
749 |
+
i = 3
|
750 |
+
model = pretrained.get_model('hdemucs_mmi')
|
751 |
+
model.to(self.device)
|
752 |
+
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
|
753 |
+
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
|
754 |
+
|
755 |
+
if update_percent_func is not None:
|
756 |
+
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
|
757 |
+
update_percent_func(int(val))
|
758 |
+
|
759 |
+
out[0] = self.weights_drums[i] * out[0]
|
760 |
+
out[1] = self.weights_bass[i] * out[1]
|
761 |
+
out[2] = self.weights_other[i] * out[2]
|
762 |
+
out[3] = self.weights_vocals[i] * out[3]
|
763 |
+
all_outs.append(out)
|
764 |
+
model = model.cpu()
|
765 |
+
del model
|
766 |
+
|
767 |
+
out = np.array(all_outs).sum(axis=0)
|
768 |
+
out[0] = out[0] / self.weights_drums.sum()
|
769 |
+
out[1] = out[1] / self.weights_bass.sum()
|
770 |
+
out[2] = out[2] / self.weights_other.sum()
|
771 |
+
out[3] = out[3] / self.weights_vocals.sum()
|
772 |
+
|
773 |
+
# vocals
|
774 |
+
separated_music_arrays['vocals'] = vocals
|
775 |
+
output_sample_rates['vocals'] = sample_rate
|
776 |
+
|
777 |
+
# other
|
778 |
+
res = mixed_sound_array - vocals - out[0].T - out[1].T
|
779 |
+
res = np.clip(res, -1, 1)
|
780 |
+
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0
|
781 |
+
output_sample_rates['other'] = sample_rate
|
782 |
+
|
783 |
+
# drums
|
784 |
+
res = mixed_sound_array - vocals - out[1].T - out[2].T
|
785 |
+
res = np.clip(res, -1, 1)
|
786 |
+
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0
|
787 |
+
output_sample_rates['drums'] = sample_rate
|
788 |
+
|
789 |
+
# bass
|
790 |
+
res = mixed_sound_array - vocals - out[0].T - out[2].T
|
791 |
+
res = np.clip(res, -1, 1)
|
792 |
+
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0
|
793 |
+
output_sample_rates['bass'] = sample_rate
|
794 |
+
|
795 |
+
bass = separated_music_arrays['bass']
|
796 |
+
drums = separated_music_arrays['drums']
|
797 |
+
other = separated_music_arrays['other']
|
798 |
+
|
799 |
+
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums
|
800 |
+
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other
|
801 |
+
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other
|
802 |
+
|
803 |
+
if update_percent_func is not None:
|
804 |
+
val = 100 * (current_file_number + 0.95) / total_files
|
805 |
+
update_percent_func(int(val))
|
806 |
+
|
807 |
+
return separated_music_arrays, output_sample_rates
|
808 |
+
|
809 |
+
|
810 |
+
def predict_with_model(options):
|
811 |
+
for input_audio in options['input_audio']:
|
812 |
+
if not os.path.isfile(input_audio):
|
813 |
+
print('Error. No such file: {}. Please check path!'.format(input_audio))
|
814 |
+
return
|
815 |
+
output_folder = options['output_folder']
|
816 |
+
if not os.path.isdir(output_folder):
|
817 |
+
os.mkdir(output_folder)
|
818 |
+
|
819 |
+
only_vocals = False
|
820 |
+
if 'only_vocals' in options:
|
821 |
+
if options['only_vocals'] is True:
|
822 |
+
print('Generate only vocals and instrumental')
|
823 |
+
only_vocals = True
|
824 |
+
|
825 |
+
model = None
|
826 |
+
if 'large_gpu' in options:
|
827 |
+
if options['large_gpu'] is True:
|
828 |
+
print('Use fast large GPU memory version of code')
|
829 |
+
model = EnsembleDemucsMDXMusicSeparationModel(options)
|
830 |
+
if model is None:
|
831 |
+
print('Use low GPU memory version of code')
|
832 |
+
model = EnsembleDemucsMDXMusicSeparationModelLowGPU(options)
|
833 |
+
|
834 |
+
update_percent_func = None
|
835 |
+
if 'update_percent_func' in options:
|
836 |
+
update_percent_func = options['update_percent_func']
|
837 |
+
|
838 |
+
for i, input_audio in enumerate(options['input_audio']):
|
839 |
+
print('Go for: {}'.format(input_audio))
|
840 |
+
audio, sr = librosa.load(input_audio, mono=False, sr=44100)
|
841 |
+
if len(audio.shape) == 1:
|
842 |
+
audio = np.stack([audio, audio], axis=0)
|
843 |
+
print("Input audio: {} Sample rate: {}".format(audio.shape, sr))
|
844 |
+
result, sample_rates = model.separate_music_file(
|
845 |
+
audio.T,
|
846 |
+
sr,
|
847 |
+
update_percent_func,
|
848 |
+
i,
|
849 |
+
len(options['input_audio']),
|
850 |
+
only_vocals,
|
851 |
+
)
|
852 |
+
all_instrum = model.instruments
|
853 |
+
if only_vocals:
|
854 |
+
all_instrum = ['vocals']
|
855 |
+
for instrum in all_instrum:
|
856 |
+
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format(instrum)
|
857 |
+
sf.write(output_folder + '/' + output_name, result[instrum], sample_rates[instrum], subtype='FLOAT')
|
858 |
+
print('File created: {}'.format(output_folder + '/' + output_name))
|
859 |
+
|
860 |
+
# instrumental part 1
|
861 |
+
inst = audio.T - result['vocals']
|
862 |
+
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum')
|
863 |
+
sf.write(output_folder + '/' + output_name, inst, sr, subtype='FLOAT')
|
864 |
+
print('File created: {}'.format(output_folder + '/' + output_name))
|
865 |
+
|
866 |
+
if not only_vocals:
|
867 |
+
# instrumental part 2
|
868 |
+
inst2 = result['bass'] + result['drums'] + result['other']
|
869 |
+
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum2')
|
870 |
+
sf.write(output_folder + '/' + output_name, inst2, sr, subtype='FLOAT')
|
871 |
+
print('File created: {}'.format(output_folder + '/' + output_name))
|
872 |
+
|
873 |
+
if update_percent_func is not None:
|
874 |
+
val = 100
|
875 |
+
update_percent_func(int(val))
|
876 |
+
|
877 |
+
|
878 |
+
def md5(fname):
|
879 |
+
hash_md5 = hashlib.md5()
|
880 |
+
with open(fname, "rb") as f:
|
881 |
+
for chunk in iter(lambda: f.read(4096), b""):
|
882 |
+
hash_md5.update(chunk)
|
883 |
+
return hash_md5.hexdigest()
|
884 |
+
|
885 |
+
|
886 |
+
if __name__ == '__main__':
|
887 |
+
start_time = time()
|
888 |
+
|
889 |
+
print("Version: {}".format(__VERSION__))
|
890 |
+
m = argparse.ArgumentParser()
|
891 |
+
m.add_argument("--input_audio", "-i", nargs='+', type=str, help="Input audio location. You can provide multiple files at once", required=True)
|
892 |
+
m.add_argument("--output_folder", "-r", type=str, help="Output audio folder", required=True)
|
893 |
+
m.add_argument("--cpu", action='store_true', help="Choose CPU instead of GPU for processing. Can be very slow.")
|
894 |
+
m.add_argument("--overlap_large", "-ol", type=float, help="Overlap of splited audio for light models. Closer to 1.0 - slower", required=False, default=0.6)
|
895 |
+
m.add_argument("--overlap_small", "-os", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.5)
|
896 |
+
m.add_argument("--single_onnx", action='store_true', help="Only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.")
|
897 |
+
m.add_argument("--chunk_size", "-cz", type=int, help="Chunk size for ONNX models. Set lower to reduce GPU memory consumption. Default: 1000000", required=False, default=1000000)
|
898 |
+
m.add_argument("--large_gpu", action='store_true', help="It will store all models on GPU for faster processing of multiple audio files. Requires 11 and more GB of free GPU memory.")
|
899 |
+
m.add_argument("--use_kim_model_1", action='store_true', help="Use first version of Kim model (as it was on contest).")
|
900 |
+
m.add_argument("--only_vocals", action='store_true', help="Only create vocals and instrumental. Skip bass, drums, other")
|
901 |
+
|
902 |
+
options = m.parse_args().__dict__
|
903 |
+
print("Options: ".format(options))
|
904 |
+
for el in options:
|
905 |
+
print('{}: {}'.format(el, options[el]))
|
906 |
+
predict_with_model(options)
|
907 |
+
print('Time: {:.0f} sec'.format(time() - start_time))
|
908 |
+
print('Presented by https://mvsep.com')
|
909 |
+
|
910 |
+
|
911 |
+
"""
|
912 |
+
Example:
|
913 |
+
python inference.py
|
914 |
+
--input_audio mixture.wav mixture1.wav
|
915 |
+
--output_folder ./results/
|
916 |
+
--cpu
|
917 |
+
--overlap_large 0.25
|
918 |
+
--overlap_small 0.25
|
919 |
+
--chunk_size 500000
|
920 |
+
"""
|
models/.gitkeep
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
soundfile
|
3 |
+
scipy
|
4 |
+
torch>=1.8.1
|
5 |
+
tqdm
|
6 |
+
librosa
|
7 |
+
demucs
|
8 |
+
onnxruntime-gpu
|
9 |
+
PyQt5
|
10 |
+
gradio
|
11 |
+
moviepy
|
12 |
+
pytube
|