import gradio as gr import torch from huggingface_hub import hf_hub_download from gradio_tabs.animation import animation from gradio_tabs.vid_edit import vid_edit from gradio_tabs.img_edit2 import img_edit from networks.generator import Generator # Optimize torch.compile performance torch.set_float32_matmul_precision('high') # Enable TensorFloat32 for better performance torch._dynamo.config.cache_size_limit = 64 # Increase cache size to reduce recompilations device = torch.device("cuda") gen = Generator(size=512, motion_dim=40, scale=2).to(device) ckpt_path = hf_hub_download(repo_id="YaohuiW/LIA-X", filename="lia-x.pt") gen.load_state_dict(torch.load(ckpt_path, weights_only=True)) gen.eval() chunk_size=30 def load_file(path): with open(path, 'r', encoding='utf-8') as f: content = f.read() return content custom_css = """ """ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: gr.HTML(load_file("assets/title.md")) with gr.Row(): with gr.Accordion(open=False, label="Instruction"): gr.Markdown(load_file("assets/instruction.md")) with gr.Row(): with gr.Tabs(): animation(gen, chunk_size, device) img_edit(gen, device) vid_edit(gen, chunk_size, device) demo.launch(allowed_paths=["./data/source","./data/driving"])