"""HTTP-based Supabase connector for OCR Arena votes. This module provides a connection to Supabase using HTTP requests, avoiding the dependency issues with the supabase client library. """ import logging import requests import json import math from typing import Dict, Any, List from dotenv import load_dotenv import os load_dotenv() SUPABASE_URL = os.getenv("SUPABASE_URL") SUPABASE_KEY = os.getenv("SUPABASE_KEY") logger = logging.getLogger(__name__) # Supabase API configuration API_BASE_URL = f"{SUPABASE_URL}/rest/v1" HEADERS = { "apikey": SUPABASE_KEY, "Authorization": f"Bearer {SUPABASE_KEY}", "Content-Type": "application/json" } def test_connection() -> bool: """Test the Supabase connection.""" try: # Test connection by trying to access the ocr_votes table table_url = f"{API_BASE_URL}/ocr_votes" response = requests.get(table_url, headers=HEADERS) if response.status_code in [200, 404]: # 200 = table exists, 404 = table doesn't exist but connection works logger.info("✅ Supabase connection test successful") return True else: logger.error(f"❌ Supabase connection failed: {response.status_code}") return False except Exception as e: logger.error(f"❌ Supabase connection test failed: {e}") return False def test_table_exists(table_name: str = "ocr_votes") -> bool: """Test if a specific table exists in the database.""" try: table_url = f"{API_BASE_URL}/{table_name}" response = requests.get(table_url, headers=HEADERS) if response.status_code == 200: logger.info(f"✅ Table '{table_name}' exists and is accessible") return True else: logger.warning(f"⚠️ Table '{table_name}' may not exist: {response.status_code}") return False except Exception as e: logger.error(f"❌ Error testing table access: {e}") return False def add_vote( username: str, model_a: str, model_b: str, model_a_output: str, model_b_output: str, vote: str, image_url: str ) -> Dict[str, Any]: """Add a vote to the ocr_votes table.""" try: # Format timestamp in the desired format: YYYY-MM-DD HH:MM:SS from datetime import datetime timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S') data = { "username": username, "model_a": model_a, "model_b": model_b, "model_a_output": model_a_output, "model_b_output": model_b_output, "vote": vote, "image_url": image_url, "timestamp": timestamp } table_url = f"{API_BASE_URL}/ocr_votes" response = requests.post(table_url, headers=HEADERS, json=data) if response.status_code == 201: logger.info("✅ Vote added successfully") try: return response.json()[0] if response.json() else data except json.JSONDecodeError: return data else: raise Exception(f"Insert failed with status {response.status_code}: {response.text}") except Exception as e: logger.error(f"❌ Error adding vote: {e}") raise def get_all_votes() -> List[Dict[str, Any]]: """Get all votes from the ocr_votes table.""" try: table_url = f"{API_BASE_URL}/ocr_votes" response = requests.get(table_url, headers=HEADERS) if response.status_code == 200: try: return response.json() except json.JSONDecodeError: logger.warning("Could not parse JSON response") return [] else: logger.error(f"Failed to get votes: {response.status_code}") return [] except Exception as e: logger.error(f"❌ Error getting votes: {e}") return [] def test_add_sample_vote() -> bool: """Test adding a sample vote to the database.""" try: sample_vote = add_vote( username="test_user", model_a="gemini", model_b="mistral", model_a_output="# Test Gemini Output\n\nThis is a **test** markdown from Gemini.", model_b_output="## Test Mistral Output\n\nThis is a *test* markdown from Mistral.", vote="model_a", image_url="" ) logger.info(f"✅ Sample vote added: {sample_vote}") return True except Exception as e: logger.error(f"❌ Error adding sample vote: {e}") return False def get_vote_statistics() -> Dict[str, Any]: """Get voting statistics.""" try: votes = get_all_votes() # Count votes for each model gemini_votes = 0 mistral_votes = 0 openai_votes = 0 gpt5_votes = 0 total_votes = len(votes) for vote in votes: vote_choice = vote.get('vote') model_a = vote.get('model_a') model_b = vote.get('model_b') if vote_choice == 'model_a': if model_a == 'gemini': gemini_votes += 1 elif model_a == 'mistral': mistral_votes += 1 elif model_a == 'openai': openai_votes += 1 elif model_a == 'gpt5': gpt5_votes += 1 elif vote_choice == 'model_b': if model_b == 'gemini': gemini_votes += 1 elif model_b == 'mistral': mistral_votes += 1 elif model_b == 'openai': openai_votes += 1 elif model_b == 'gpt5': gpt5_votes += 1 return { "total_votes": total_votes, "gemini_votes": gemini_votes, "mistral_votes": mistral_votes, "openai_votes": openai_votes, "gpt5_votes": gpt5_votes, "gemini_percentage": (gemini_votes / total_votes * 100) if total_votes > 0 else 0, "mistral_percentage": (mistral_votes / total_votes * 100) if total_votes > 0 else 0, "openai_percentage": (openai_votes / total_votes * 100) if total_votes > 0 else 0, "gpt5_percentage": (gpt5_votes / total_votes * 100) if total_votes > 0 else 0 } except Exception as e: logger.error(f"❌ Error getting vote statistics: {e}") return {} def calculate_elo_rating(rating_a: float, rating_b: float, result_a: float, k_factor: int = 32) -> tuple[float, float]: """ Calculate new ELO ratings for two players after a match. Args: rating_a: Current ELO rating of player A rating_b: Current ELO rating of player B result_a: Result for player A (1 for win, 0.5 for draw, 0 for loss) k_factor: K-factor determines how much a single result affects the rating Returns: tuple: (new_rating_a, new_rating_b) """ # Calculate expected scores expected_a = 1 / (1 + 10 ** ((rating_b - rating_a) / 400)) expected_b = 1 / (1 + 10 ** ((rating_a - rating_b) / 400)) # Calculate new ratings new_rating_a = rating_a + k_factor * (result_a - expected_a) new_rating_b = rating_b + k_factor * ((1 - result_a) - expected_b) return new_rating_a, new_rating_b def calculate_elo_ratings_from_votes(votes: List[Dict[str, Any]]) -> Dict[str, float]: """ Calculate ELO ratings for all models based on vote history. Args: votes: List of vote dictionaries from database Returns: dict: Current ELO ratings for each model """ # Initialize ELO ratings (starting at 1500) elo_ratings = { "gemini": 1500, "mistral": 1500, "openai": 1500, "gpt5": 1500 } # Process each vote to update ELO ratings for vote in votes: model_a = vote.get('model_a') model_b = vote.get('model_b') vote_choice = vote.get('vote') if model_a and model_b and vote_choice: # Determine result for model A if vote_choice == 'model_a': result_a = 1 # Model A wins elif vote_choice == 'model_b': result_a = 0 # Model A loses else: continue # Skip invalid votes # Calculate new ELO ratings new_rating_a, new_rating_b = calculate_elo_rating( elo_ratings[model_a], elo_ratings[model_b], result_a ) # Update ratings elo_ratings[model_a] = new_rating_a elo_ratings[model_b] = new_rating_b return elo_ratings if __name__ == "__main__": print(test_connection()) print(test_add_sample_vote())