PrivalingoDemo / app.py
zyu
update model paths. improve readability of code.
93d0613
raw
history blame
5.45 kB
import json
import os
import random
import re
import numpy as np
import streamlit as st
import torch
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer
@st.cache_resource(show_spinner=False)
def load_model(model_name, tokenizer_name):
try:
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
except Exception as e:
st.error(f"Error loading model: {e}")
st.error(f"Model not found. Use {DEFAULT_MODEL} instead")
model_path = DEFAULT_MODEL
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL)
return model, tokenizer
def load_json(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def preprocess(input_text, tokenizer, src_lang, tgt_lang):
# task_prefix = f"translate {src_lang} to {tgt_lang}: "
# input_text = task_prefix + input_text
model_inputs = tokenizer(
input_text, max_length=MAX_SEQ_LEN, padding="max_length", truncation=True, return_tensors="np"
)
return model_inputs
def translate(input_text, model, tokenizer, src_lang, tgt_lang):
model_inputs = preprocess(input_text, tokenizer, src_lang, tgt_lang)
model_outputs = model.generate(**model_inputs, num_beams=NUM_BEAMS)
prediction = tokenizer.batch_decode(model_outputs.sequences, skip_special_tokens=True)
return prediction[0]
def hold_deterministic(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
def postprocess(output_text):
output = re.sub(r"<extra_id[^>]*>", "", output_text)
return output
def display_ui():
st.set_page_config(page_title="DP-NMT DEMO", layout="wide")
st.title("Neural Machine Translation with DP-SGD")
st.write(
"[![Star](https://img.shields.io/github/stars/trusthlt/dp-nmt.svg?logo=github&style=social)](https://github.com/trusthlt/dp-nmt)"
"&nbsp;&nbsp;&nbsp;"
"[![ACL](https://img.shields.io/badge/ACL-Link-red.svg?logo=&link=https%3A%2F%2Faclanthology.org%2F2024.eacl-demo.11%2F)](https://aclanthology.org/2024.eacl-demo.11/)"
)
st.write("This is a demo for private neural machine translation with DP-SGD.")
left, right = st.columns(2)
return left, right
def load_selected_model(config, dataset, language_pair, epsilon):
ckpt = config[dataset]['languages pairs'][language_pair]['epsilon'][str(epsilon)]
if "privalingo" in ckpt:
model_path = ckpt # load model from huggingface hub
else:
model_name = DEFAULT_MODEL.split('/')[-1]
model_path = os.path.join(CHECKPOINTS_DIR, ckpt, model_name)
if not os.path.exists(model_path):
st.error(f"Model not found. Using default model: {DEFAULT_MODEL}")
model_path = DEFAULT_MODEL
return model_path
def main():
hold_deterministic(SEED)
left, right = display_ui()
with left:
dataset = st.selectbox("Choose a dataset used for fine-tuning", list(DATASETS_MODEL_INFO.keys()))
language_pairs_list = list(DATASETS_MODEL_INFO[dataset]["languages pairs"].keys())
language_pair = st.selectbox("Language pair for translation", language_pairs_list)
src_lang, tgt_lang = language_pair.split("-")
epsilon_options = list(DATASETS_MODEL_INFO[dataset]['languages pairs'][language_pair]['epsilon'].keys())
epsilon = st.radio("Select a privacy budget epsilon", epsilon_options, horizontal=True)
model_status_box = st.empty()
with right:
input_text = st.text_area("Enter Text", "Enter Text Here", max_chars=MAX_INPUT_LEN)
btn_translate = st.button("Translate")
result_container = st.empty()
model_path = load_selected_model(config, dataset, language_pair, epsilon)
with left:
model_status_box.write("")
with st.spinner(f'Loading model trained on {dataset} with epsilon {epsilon}...'):
model, tokenizer = load_model(model_path, tokenizer_name=DEFAULT_MODEL)
model_status_box.success('Model loaded!')
if btn_translate:
with right:
with st.spinner("Translating..."):
prediction = translate(input_text, model, tokenizer, src_lang, tgt_lang)
result_container.write("**Translation:**")
output_container = result_container.container(border=True)
output_container.write("".join([postprocess(prediction)]))
if __name__ == '__main__':
DATASETS_MODEL_INFO_PATH = os.path.join(os.getcwd(), "dataset_and_model_info.json")
print(DATASETS_MODEL_INFO_PATH)
DATASETS_MODEL_INFO = load_json(DATASETS_MODEL_INFO_PATH)
DEFAULT_MODEL = 'google/mt5-small'
MAX_SEQ_LEN = 512
NUM_BEAMS = 3
SEED = 2023
MAX_INPUT_LEN = 500
main()