PrivalingoDemo / app.py
zyu
fix path issues
40e17e4
raw
history blame
3.11 kB
import json
import os
import random
import numpy as np
import streamlit as st
import torch
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer
@st.cache_resource
def load_model(model_name, tokenizer_name):
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
return model, tokenizer
def load_json(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def preprocess(input_text, tokenizer, src_lang, tgt_lang):
# task_prefix = f"translate {src_lang} to {tgt_lang}: "
# input_text = task_prefix + input_text
model_inputs = tokenizer(
input_text, max_length=MAX_SEQ_LEN, padding="max_length", truncation=True, return_tensors="np"
)
return model_inputs
def translate(input_text, model, tokenizer, src_lang, tgt_lang):
model_inputs = preprocess(input_text, tokenizer, src_lang, tgt_lang)
model_outputs = model.generate(**model_inputs, num_beams=NUM_BEAMS)
prediction = tokenizer.batch_decode(model_outputs.sequences, skip_special_tokens=True)
return prediction[0]
def hold_deterministic(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
def main():
hold_deterministic(SEED)
st.title("Neural Machine Translation with DP-SGD")
st.write("This is a demo for private neural machine translation with DP-SGD. More detail can be found in the [repository](https://github.com/trusthlt/dp-nmt)")
dataset = st.selectbox("Choose a dataset used for fine-tuning", list(DATASETS_MODEL_INFO.keys()))
language_pairs_list = list(DATASETS_MODEL_INFO[dataset]["languages pairs"].keys())
language_pair = st.selectbox("Language pair for translation", language_pairs_list)
src_lang, tgt_lang = language_pair.split("-")
epsilon_options = list(DATASETS_MODEL_INFO[dataset]['languages pairs'][language_pair]['epsilon'].keys())
epsilon = st.radio("Select a privacy budget epsilon", epsilon_options)
st_model_load = st.text(f'Loading model trained on {dataset} with epsilon {epsilon}...')
model_path = DATASETS_MODEL_INFO[dataset]['languages pairs'][language_pair]['epsilon'][str(epsilon)]
if not os.path.exists(model_path):
st.error(f"Model not found. Use {DEFAULT_MODEL} instead")
model_path = DEFAULT_MODEL
model, tokenizer = load_model(model_path, tokenizer_name=DEFAULT_MODEL)
st.success('Model loaded!')
st_model_load.text("")
input_text = st.text_area("Enter Text", "Enter Text Here", max_chars=200)
if st.button("Translate"):
st.write("Translation")
prediction = translate(input_text, model, tokenizer, src_lang, tgt_lang)
st.success("".join([prediction]))
if __name__ == '__main__':
DATASETS_MODEL_INFO_PATH = os.path.join(os.getcwd(), "dataset_and_model_info.json")
DATASETS_MODEL_INFO = load_json(DATASETS_MODEL_INFO_PATH)
DEFAULT_MODEL = 'google/mt5-small'
MAX_SEQ_LEN = 512
NUM_BEAMS = 3
SEED = 2023
main()