Spaces:
Running
Running
File size: 1,757 Bytes
51348d0 f87f969 bd0c703 f87f969 81ec3b4 f1fd352 f87f969 bd0c703 57bafce 3d6730e bd0c703 81ec3b4 bd0c703 f87f969 81ec3b4 f87f969 bd0c703 81ec3b4 bd0c703 81ec3b4 bd0c703 81ec3b4 bd0c703 81ec3b4 bd0c703 81ec3b4 57bafce f87f969 51348d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import streamlit as st
from transformers import pipeline
from ModelDriver import *
import numpy as np
# Add a title
st.title('GPT Detection Demo')
st.write("This is a demo for GPT detection. You can use this demo to test the model. The model is trained on two datasets: OpenGPT and CSAbstract. You can choose the model and dataset in the sidebar.")
st.write("Reference on how we built Roberta Sentinel: https://arxiv.org/abs/2305.07969")
# Add 4 options for 4 models
ModelOption = st.sidebar.selectbox(
'Which Model do you want to use?',
('RobertaSentinel', 'RobertaClassifier'),
)
DatasetOption = st.sidebar.selectbox(
'Which Dataset the model was trained on?',
('OpenGPT', 'CSAbstract'),
)
text = st.text_area('Enter text here (max 500 words)', '')
if st.button('Generate'):
if ModelOption == 'RobertaSentinel':
if DatasetOption == 'OpenGPT':
result = RobertaSentinelOpenGPTInference(text)
st.write("Model: RobertaSentinelOpenGPT")
elif DatasetOption == 'CSAbstract':
result = RobertaSentinelCSAbstractInference(text)
st.write("Model: RobertaSentinelCSAbstract")
elif ModelOption == 'RobertaClassifier':
if DatasetOption == 'OpenGPT':
result = RobertaClassifierOpenGPTInference(text)
st.write("Model: RobertaClassifierOpenGPT")
elif DatasetOption == 'CSAbstract':
result = RobertaClassifierCSAbstractInference(text)
st.write("Model: RobertaClassifierCSAbstract")
Prediction = "Human Written" if not np.argmax(result) else "Machine Generated"
st.write(f"Prediction: {Prediction} ")
st.write(f"Probabilty:", max(result))
|