File size: 1,999 Bytes
57bafce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaModel
import torch
import torch.nn as nn

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class MLP(nn.Module):
    def __init__(self, input_dim):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(input_dim, 256)
        self.fc2 = nn.Linear(256, 2)
        self.gelu = nn.GELU()

    def forward(self, x):
        x = self.gelu(self.fc1(x))
        x = self.fc2(x)
        return x
def extract_features(text):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
    model = RobertaModel.from_pretrained("roberta-base").to(device)
    tokenized_text = tokenizer.encode(text, truncation=True, max_length=512, return_tensors="pt")
    outputs = model(tokenized_text)
    last_hidden_states = outputs.last_hidden_state
    TClassification = last_hidden_states[:, 0, :].squeeze().detach().numpy()
    return TClassification

def RobertaSentinelOpenGPTInference(input_text):
    features = extract_features(input_text)
    loaded_model = MLP(768).to(device)
    loaded_model.load_state_dict(torch.load("MLPDictStates/RobertaSentinelOpenGPT.pth"))

    # Define the tokenizer and model for feature extraction
    with torch.no_grad():
        inputs = torch.tensor(features).to(device)
        outputs = loaded_model(inputs.float())
        _, predicted = torch.max(outputs, 1)

    return predicted.item()

def RobertaSentinelCSAbstractInference(input_text):
    features = extract_features(input_text)
    loaded_model = MLP(768).to(device)
    loaded_model.load_state_dict(torch.load("MLPDictStates/RobertaSentinelCSAbstract.pth"))

    # Define the tokenizer and model for feature extraction
    with torch.no_grad():
        inputs = torch.tensor(features).to(device)
        outputs = loaded_model(inputs.float())
        _, predicted = torch.max(outputs, 1)

    return predicted.item()