leo-bourrel commited on
Commit
dad916e
·
1 Parent(s): bf1521f

clean: delete useless class methods

Browse files
Files changed (1) hide show
  1. custom_pgvector.py +0 -126
custom_pgvector.py CHANGED
@@ -431,129 +431,3 @@ class CustomPGVector(VectorStore):
431
  pre_delete_collection=pre_delete_collection,
432
  **kwargs,
433
  )
434
-
435
- @classmethod
436
- def from_embeddings(
437
- cls,
438
- text_embeddings: List[Tuple[str, List[float]]],
439
- embedding: Embeddings,
440
- metadatas: Optional[List[dict]] = None,
441
- table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
442
- distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
443
- ids: Optional[List[str]] = None,
444
- pre_delete_collection: bool = False,
445
- **kwargs: Any,
446
- ) -> CustomPGVector:
447
- """Construct PGVector wrapper from raw documents and pre-
448
- generated embeddings.
449
-
450
- Return VectorStore initialized from documents and embeddings.
451
- Postgres connection string is required
452
- "Either pass it as a parameter
453
- or set the PGVECTOR_CONNECTION_STRING environment variable.
454
-
455
- Example:
456
- .. code-block:: python
457
-
458
- from langchain.vectorstores import PGVector
459
- from langchain.embeddings import OpenAIEmbeddings
460
- embeddings = OpenAIEmbeddings()
461
- text_embeddings = embeddings.embed_documents(texts)
462
- text_embedding_pairs = list(zip(texts, text_embeddings))
463
- faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings)
464
- """
465
- texts = [t[0] for t in text_embeddings]
466
- embeddings = [t[1] for t in text_embeddings]
467
-
468
- return cls.__from(
469
- texts,
470
- embeddings,
471
- embedding,
472
- metadatas=metadatas,
473
- ids=ids,
474
- table_name=table_name,
475
- distance_strategy=distance_strategy,
476
- pre_delete_collection=pre_delete_collection,
477
- **kwargs,
478
- )
479
-
480
- @classmethod
481
- def from_existing_index(
482
- cls: Type[CustomPGVector],
483
- embedding: Embeddings,
484
- table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
485
- distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
486
- pre_delete_collection: bool = False,
487
- **kwargs: Any,
488
- ) -> CustomPGVector:
489
- """
490
- Get intsance of an existing PGVector store.This method will
491
- return the instance of the store without inserting any new
492
- embeddings
493
- """
494
-
495
- connection_string = cls.get_connection_string(kwargs)
496
-
497
- store = cls(
498
- connection_string=connection_string,
499
- table_name=table_name,
500
- embedding_function=embedding,
501
- distance_strategy=distance_strategy,
502
- pre_delete_collection=pre_delete_collection,
503
- )
504
-
505
- return store
506
-
507
- @classmethod
508
- def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
509
- connection_string: str = get_from_dict_or_env(
510
- data=kwargs,
511
- key="connection_string",
512
- env_key="PGVECTOR_CONNECTION_STRING",
513
- )
514
-
515
- if not connection_string:
516
- raise ValueError(
517
- "Postgres connection string is required"
518
- "Either pass it as a parameter"
519
- "or set the PGVECTOR_CONNECTION_STRING environment variable."
520
- )
521
-
522
- return connection_string
523
-
524
- @classmethod
525
- def from_documents(
526
- cls: Type[CustomPGVector],
527
- documents: List[Document],
528
- embedding: Embeddings,
529
- table_name: str = "article",
530
- column_name: str = "embeding",
531
- distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
532
- ids: Optional[List[str]] = None,
533
- pre_delete_collection: bool = False,
534
- **kwargs: Any,
535
- ) -> CustomPGVector:
536
- """
537
- Return VectorStore initialized from documents and embeddings.
538
- Postgres connection string is required
539
- "Either pass it as a parameter
540
- or set the PGVECTOR_CONNECTION_STRING environment variable.
541
- """
542
-
543
- texts = [d.page_content for d in documents]
544
- metadatas = [d.metadata for d in documents]
545
- connection_string = cls.get_connection_string(kwargs)
546
-
547
- kwargs["connection_string"] = connection_string
548
-
549
- return cls.from_texts(
550
- texts=texts,
551
- pre_delete_collection=pre_delete_collection,
552
- embedding=embedding,
553
- distance_strategy=distance_strategy,
554
- metadatas=metadatas,
555
- ids=ids,
556
- table_name=table_name,
557
- column_name=column_name,
558
- **kwargs,
559
- )
 
431
  pre_delete_collection=pre_delete_collection,
432
  **kwargs,
433
  )