Spaces:
Sleeping
Sleeping
File size: 3,781 Bytes
550e87b be06203 3f940cd 4bcb630 6a2d3ac c3b9b9a 4bcb630 be06203 6a2d3ac c3b9b9a 6a2d3ac 4bcb630 c3b9b9a 4bcb630 c3b9b9a 4bcb630 c3b9b9a 4bcb630 c3b9b9a 6a2d3ac c3b9b9a 6a2d3ac c3b9b9a f6c85ec c89ea47 f6c85ec c3b9b9a c89ea47 6a2d3ac c89ea47 6a2d3ac bc46efe 6a2d3ac 94edcbd 6a2d3ac 8706267 6a2d3ac d04f0b2 6a2d3ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
import streamlit as st
import streamlit.components.v1 as components
from css import load_css
from custom_pgvector import CustomPGVector
from langchain import OpenAI
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.embeddings import GPT4AllEmbeddings
from message import Message
CONNECTION_STRING = "postgresql+psycopg2://localhost/sorbobot"
def initialize_session_state():
if "history" not in st.session_state:
st.session_state.history = []
if "token_count" not in st.session_state:
st.session_state.token_count = 0
if "conversation" not in st.session_state:
embeddings = GPT4AllEmbeddings()
db = CustomPGVector(
embedding_function=embeddings,
table_name="article",
column_name="abstract_embedding",
connection_string=CONNECTION_STRING,
)
retriever = db.as_retriever()
llm = OpenAI(
temperature=0,
openai_api_key=os.environ["OPENAI_API_KEY"],
model="text-davinci-003",
)
memory = ConversationBufferMemory(
output_key="answer", memory_key="chat_history", return_messages=True
)
st.session_state.conversation = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
verbose=True,
memory=memory,
return_source_documents=True,
)
def on_click_callback():
with get_openai_callback() as cb:
human_prompt = st.session_state.human_prompt
llm_response = st.session_state.conversation(human_prompt)
st.session_state.history.append(Message("human", human_prompt))
st.session_state.history.append(
Message("ai", llm_response["answer"], llm_response["source_documents"])
)
st.session_state.token_count += cb.total_tokens
load_css()
initialize_session_state()
st.title("Sorbobot - Le futur de la recherche scientifique interactive")
chat_placeholder = st.container()
prompt_placeholder = st.form("chat-form")
information_placeholder = st.empty()
with chat_placeholder:
for chat in st.session_state.history:
div = f"""
<div class="chat-row
{'' if chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="./app/static/{
'ai_icon.png' if chat.origin == 'ai'
else 'user_icon.png'}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
​{chat.message}
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
for _ in range(3):
st.markdown("")
with prompt_placeholder:
st.markdown("**Chat**")
cols = st.columns((6, 1))
cols[0].text_input(
"Chat",
value="Hello bot",
label_visibility="collapsed",
key="human_prompt",
)
cols[1].form_submit_button(
"Submit",
type="primary",
on_click=on_click_callback,
)
information_placeholder.caption(
f"""
Used {st.session_state.token_count} tokens \n
Debug Langchain conversation:
{st.session_state.conversation.memory.buffer}
"""
)
components.html(
"""
<script>
const streamlitDoc = window.parent.document;
const buttons = Array.from(
streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
el => el.innerText === 'Submit'
);
streamlitDoc.addEventListener('keydown', function(e) {
switch (e.key) {
case 'Enter':
submitButton.click();
break;
}
});
</script>
""",
height=0,
width=0,
)
|