Shashikiran42 commited on
Commit
b53630e
·
verified ·
1 Parent(s): 1b54a97

First_update

Browse files
Files changed (1) hide show
  1. app.py +78 -51
app.py CHANGED
@@ -1,64 +1,91 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import faiss
3
+ import numpy as np
4
+ import requests
5
+ import torch
6
+ from transformers import AutoTokenizer, AutoModelForCausalLM
7
+ from sentence_transformers import SentenceTransformer
8
 
9
+ class CustomRetriever:
10
+ def __init__(self, faiss_index_path: str):
11
+ """Initializes the retriever by loading the FAISS index and setting up the embedding model."""
12
+ self.index = faiss.read_index(faiss_index_path)
13
+ self.embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
14
+
15
+ def retrieve(self, query: str, top_k: int = 5):
16
+ """Retrieve top-k relevant documents based on the query."""
17
+ query_embedding = self.embedder.encode([query])
18
+ distances, indices = self.index.search(np.array(query_embedding).astype('float32'), top_k)
19
+ return [(index, distance) for index, distance in zip(indices[0], distances[0])]
20
 
21
 
22
+ class CustomGenerator:
23
+ def __init__(self):
24
+ """Initializes the generator by loading the HuggingFace model."""
25
+ self.tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
26
+ self.model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
27
+
28
+ def generate(self, user_input: str, retrieved_docs: list, max_length: int = 256):
29
+ """Generate a response using the retrieved documents and the user input."""
30
+ context = "\n".join([f"Doc {i+1}: {doc}" for i, (doc, _) in enumerate(retrieved_docs)])
31
+ prompt = f"Context:\n{context}\n\nUser: {user_input}\nBot:"
32
+ inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True)
33
+ with torch.no_grad():
34
+ outputs = self.model.generate(inputs.input_ids, max_length=max_length, pad_token_id=self.tokenizer.eos_token_id)
35
+ response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
36
+ return response.split("Bot:")[-1].strip()
37
 
 
 
 
 
 
38
 
39
+ def rag_chatbot(user_input):
40
+ """The main RAG chatbot function to retrieve documents and generate a response."""
41
+ top_k = 5 # Number of documents to retrieve
42
+ retrieved_doc_ids = retriever.retrieve(user_input, top_k)
43
+ retrieved_docs = [(f"Dummy content for doc {doc_id}", distance) for doc_id, distance in retrieved_doc_ids]
44
+ response = generator.generate(user_input, retrieved_docs)
45
+ return response
46
 
 
47
 
48
+ FAISS_INDEX_PATH = "path/to/your/faiss_index"
49
+ retriever = CustomRetriever(faiss_index_path=FAISS_INDEX_PATH)
50
+ generator = CustomGenerator()
 
 
 
 
 
51
 
52
+ # Gradio UI
53
+ app = gr.Blocks()
54
 
55
+ with app:
56
+ gr.Markdown(
57
+ """
58
+ # Banking Regulations Compliance ChatBOT
59
+ Ask questions and get responses generated by a state-of-the-art AI model!
60
+ """
61
+ )
62
 
63
+ chatbot = gr.Chatbot(label="Chat with the Bot")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
+ question_box = gr.Textbox(
66
+ label="Your Message",
67
+ placeholder="Type your message here...",
68
+ lines=1,
69
+ )
70
+ submit_button = gr.Button("Send")
71
 
72
+ gr.Examples(
73
+ examples=[
74
+ "What is Compliance?",
75
+ "Can you summarize the RBI Guidelines?",
76
+ "Can you summarize the RBI Guidelines related to gold loans?",
77
+ ],
78
+ inputs=question_box,
79
+ )
80
+
81
+ submit_button.click(ask_model, inputs=[chatbot, question_box], outputs=chatbot)
82
+
83
+ footer_md = """
84
+ ---
85
+ © 2024 by [Shashi Kiran, Karthik K, Venkara V V, Navin Kumar N, Jyoti Bavne]. All rights reserved.
86
+ This app was developed by **6505 Project Team** as part of Final Project.
87
+ For inquiries, please contact: [schandrappa@student.fairfield.edu](mailto:schandrappa@student.fairfield.edu)
88
+ """
89
+ gr.Markdown(footer_md)
90
+
91
+ app.launch()