File size: 2,135 Bytes
0e78cbf
 
 
 
 
d766b17
 
0e78cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d766b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from collections import defaultdict
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from matplotlib import cm
import torch
import cv2
import random 

def draw_panoptic_segmentation(model,segmentation, segments_info):
    # get the used color map
    viridis = cm.get_cmap('viridis', torch.max(segmentation))
    fig, ax = plt.subplots()
    ax.imshow(segmentation.cpu().numpy())
    instances_counter = defaultdict(int)
    handles = []
    # for each segment, draw its legend
    for segment in segments_info:
        segment_id = segment['id']
        segment_label_id = segment['label_id']
        segment_label = model.config.id2label[segment_label_id]
        label = f"{segment_label}-{instances_counter[segment_label_id]}"
        instances_counter[segment_label_id] += 1
        color = viridis(segment_id)
        handles.append(mpatches.Patch(color=color, label=label))
        
    # ax.legend(handles=handles)
    fig.savefig('final_mask.png')
    return 'final_mask.png'


def draw_bboxes(rgb_frame,boxes,labels,color=None,line_thickness=3):
    rgb_frame = cv2.imread(rgb_frame)
    rgb_frame = cv2.cvtColor(rgb_frame,cv2.COLOR_BGR2RGB)
    
    tl = line_thickness or round(0.002 * (rgb_frame.shape[0] + rgb_frame.shape[1]) / 2) + 1  # line/font thickness
    rgb_frame_copy = rgb_frame.copy()
    if color is None :
        color = color or [random.randint(0, 255) for _ in range(3)]
    for box,label in zip(boxes,labels):
        if box.type() == 'torch.IntTensor':
            box = box.numpy()
        # extract coordinates 
        x1,y1,x2,y2 = box
        c1,c2  = (x1,y1),(x2,y2)
        # Draw rectangle
        cv2.rectangle(rgb_frame_copy, c1,c2, color, thickness=tl, lineType=cv2.LINE_AA)
        
        tf = max(tl - 1, 1)  # font thickness
        # label = label2id[int(label.numpy())]
        t_size = cv2.getTextSize(str(label), 0, fontScale=tl / 3, thickness=tf)[0]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
        cv2.putText(rgb_frame_copy, str(label), (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
    return rgb_frame_copy