Sakil commited on
Commit
2e6cd73
·
1 Parent(s): c140758

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -8
app.py CHANGED
@@ -8,7 +8,7 @@ from scipy.stats import chi2_contingency
8
  import numpy as np
9
  import seaborn as sns
10
  import matplotlib.pyplot as plt
11
-
12
  def cramers_V(var1,var2) :
13
  crosstab =np.array(pd.crosstab(var1,var2, rownames=None, colnames=None)) # Cross table building
14
  stat = chi2_contingency(crosstab)[0] # Keeping of the test statistic of the Chi2 test
@@ -17,6 +17,7 @@ def cramers_V(var1,var2) :
17
  return (stat/(obs*mini))
18
 
19
  def predict(file_obj):
 
20
  df = pd.read_csv(file_obj.name)
21
  cat_df = df.select_dtypes(include=['object'])
22
  rows= []
@@ -28,20 +29,27 @@ def predict(file_obj):
28
  rows.append(col)
29
  cramers_results = np.array(rows)
30
  df_final= pd.DataFrame(cramers_results, columns = cat_df.columns, index =cat_df.columns)
31
- #plt.close()
32
  # return df_final
33
- data = np.random.randint(low=1,
34
- high=1000,
35
- size=(10, 10))
36
  annot = True
37
 
38
  # plotting the heatmap
 
39
  hm = sns.heatmap(data=df_final,
40
  annot=annot)
41
- # plt.show()
42
- # plt.figure()
 
 
43
  return plt.gcf()
 
 
 
 
44
 
45
 
46
- iface = gr.Interface(predict,inputs="file",outputs="plot",theme="dark-peach",examples=["StudentsPerformance.csv"],title='Correlation Tool for Categorical features',description="This tool identifies and explains the correlation between categorical features.")
47
  iface.launch(inline=False)
 
8
  import numpy as np
9
  import seaborn as sns
10
  import matplotlib.pyplot as plt
11
+ import os
12
  def cramers_V(var1,var2) :
13
  crosstab =np.array(pd.crosstab(var1,var2, rownames=None, colnames=None)) # Cross table building
14
  stat = chi2_contingency(crosstab)[0] # Keeping of the test statistic of the Chi2 test
 
17
  return (stat/(obs*mini))
18
 
19
  def predict(file_obj):
20
+
21
  df = pd.read_csv(file_obj.name)
22
  cat_df = df.select_dtypes(include=['object'])
23
  rows= []
 
29
  rows.append(col)
30
  cramers_results = np.array(rows)
31
  df_final= pd.DataFrame(cramers_results, columns = cat_df.columns, index =cat_df.columns)
32
+
33
  # return df_final
34
+ # data = np.random.randint(low=1,
35
+ # high=1000,
36
+ # size=(10, 10))
37
  annot = True
38
 
39
  # plotting the heatmap
40
+ plt.close('all')
41
  hm = sns.heatmap(data=df_final,
42
  annot=annot)
43
+ # return plt.show()
44
+ # return plt.figure()
45
+ plt.savefig('box.png')
46
+
47
  return plt.gcf()
48
+ # plt.clf()
49
+ # return plt.plot()
50
+
51
+
52
 
53
 
54
+ iface = gr.Interface(predict,inputs="file",outputs="plot",theme="dark-peach",title='Correlation Tool for Categorical features',description="This tool identifies and explains the correlation between categorical features.")
55
  iface.launch(inline=False)