Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,25 @@ import gradio as gr
|
|
2 |
import pydicom
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def interpret_dicom(files):
|
8 |
slices = []
|
@@ -11,19 +29,37 @@ def interpret_dicom(files):
|
|
11 |
slices.append(ds.pixel_array)
|
12 |
slices = np.array(slices)
|
13 |
mid_slice = slices[len(slices)//2]
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
plt.savefig('output.png')
|
18 |
plt.close()
|
19 |
-
|
|
|
20 |
|
21 |
iface = gr.Interface(
|
22 |
fn=interpret_dicom,
|
23 |
inputs=gr.File(file_count="multiple", label="Upload DICOM files"),
|
24 |
-
outputs=[gr.Image(type="filepath", label="
|
25 |
-
title="DICOM Radiology Interpreter",
|
26 |
-
description="Upload your DICOM files (e.g., CT scan slices). The app will show the middle slice and
|
27 |
)
|
28 |
|
29 |
if __name__ == "__main__":
|
|
|
2 |
import pydicom
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
+
import torch
|
6 |
+
from monai.networks.nets import UNet
|
7 |
+
from monai.transforms import Compose, ScaleIntensity, ToTensor
|
8 |
+
|
9 |
+
# 1. Define a simple MONAI model (2D UNet)
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model = UNet(
|
12 |
+
dimensions=2,
|
13 |
+
in_channels=1,
|
14 |
+
out_channels=1,
|
15 |
+
channels=(16, 32, 64, 128, 256),
|
16 |
+
strides=(2, 2, 2, 2),
|
17 |
+
num_res_units=2,
|
18 |
+
).to(device)
|
19 |
+
model.eval() # Set model to evaluation mode
|
20 |
+
|
21 |
+
# 2. Dummy weights (for demo only)
|
22 |
+
# In real use, load pre-trained weights:
|
23 |
+
# model.load_state_dict(torch.load("your_model.pth", map_location=device))
|
24 |
|
25 |
def interpret_dicom(files):
|
26 |
slices = []
|
|
|
29 |
slices.append(ds.pixel_array)
|
30 |
slices = np.array(slices)
|
31 |
mid_slice = slices[len(slices)//2]
|
32 |
+
|
33 |
+
# Preprocess for MONAI model
|
34 |
+
transform = Compose([ScaleIntensity(), ToTensor()])
|
35 |
+
input_tensor = transform(mid_slice.astype(np.float32))
|
36 |
+
input_tensor = input_tensor.unsqueeze(0).to(device) # Add batch dimension
|
37 |
+
|
38 |
+
# 3. Run through MONAI model (dummy output for now)
|
39 |
+
with torch.no_grad():
|
40 |
+
output = model(input_tensor)
|
41 |
+
output_np = output.cpu().numpy()[0, 0]
|
42 |
+
|
43 |
+
# 4. Show original and model output side by side
|
44 |
+
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
|
45 |
+
axs[0].imshow(mid_slice, cmap='gray')
|
46 |
+
axs[0].set_title('Original')
|
47 |
+
axs[0].axis('off')
|
48 |
+
axs[1].imshow(output_np, cmap='hot')
|
49 |
+
axs[1].set_title('Model Output')
|
50 |
+
axs[1].axis('off')
|
51 |
+
plt.tight_layout()
|
52 |
plt.savefig('output.png')
|
53 |
plt.close()
|
54 |
+
|
55 |
+
return 'output.png', "Interpretation: Model output shown (demo weights)."
|
56 |
|
57 |
iface = gr.Interface(
|
58 |
fn=interpret_dicom,
|
59 |
inputs=gr.File(file_count="multiple", label="Upload DICOM files"),
|
60 |
+
outputs=[gr.Image(type="filepath", label="Result"), gr.Textbox(label="Interpretation")],
|
61 |
+
title="DICOM Radiology Interpreter with MONAI",
|
62 |
+
description="Upload your DICOM files (e.g., CT scan slices). The app will show the middle slice and a MONAI model output."
|
63 |
)
|
64 |
|
65 |
if __name__ == "__main__":
|