Spaces:
Runtime error
Runtime error
File size: 17,645 Bytes
b5144da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import gradio as gr
from pathlib import Path
from tempfile import NamedTemporaryFile
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter
import pandas as pd
from pydantic import BaseModel, Field
from phi.agent import Agent
from phi.model.groq import Groq
import os
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# API Key setup
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
logger.error("GROQ_API_KEY not found.")
else:
os.environ["GROQ_API_KEY"] = api_key
# Pydantic Model for Quiz Structure
class QuizItem(BaseModel):
question: str = Field(..., description="The quiz question")
choices: list[str] = Field(..., description="List of 4 multiple-choice options")
correct_answer: str = Field(..., description="The correct choice (e.g., 'C1')")
class QuizOutput(BaseModel):
items: list[QuizItem] = Field(..., description="List of 10 quiz items")
# Initialize Agents
groq_agent = Agent(model=Groq(model="llama3-70b-8192", api_key=api_key), markdown=True)
quiz_generator = Agent(
name="Quiz Generator",
role="Generates structured quiz questions and answers",
instructions=[
"Create 10 questions with 4 choices each based on the provided topic and documents.",
"Use the specified difficulty level (easy, average, hard) to adjust question complexity.",
"Ensure questions are derived only from the provided documents.",
"Return the output in a structured format using the QuizOutput Pydantic model.",
"Each question should have a unique correct answer from the choices (labeled C1, C2, C3, C4)."
],
model=Groq(id="llama3-70b-8192", api_key=api_key),
response_model=QuizOutput,
markdown=True
)
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()
# Calling functions from backend (assuming they exist)
from backend.semantic_search import table, retriever
def generate_quiz_data(question_difficulty, topic, documents_str):
prompt = f"""Generate a quiz with {question_difficulty} difficulty on topic '{topic}' using only the following documents:\n{documents_str}"""
try:
response = quiz_generator.run(prompt)
return response.content
except Exception as e:
logger.error(f"Failed to generate quiz: {e}")
return None
def json_to_excel(quiz_data):
data = []
gr.Warning('Generating Shareable file link..', duration=30)
for i, item in enumerate(quiz_data.items, 1):
data.append([
item.question,
"Multiple Choice",
item.choices[0],
item.choices[1],
item.choices[2],
item.choices[3],
'', # Option 5 (empty)
item.correct_answer.replace('C', ''),
30,
''
])
df = pd.DataFrame(data, columns=[
"Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Option 5", "Correct Answer", "Time in seconds", "Image Link"
])
temp_file = NamedTemporaryFile(delete=True, suffix=".xlsx")
df.to_excel(temp_file.name, index=False)
return temp_file.name
colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple")
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
with gr.Row():
with gr.Column(scale=2):
gr.Image(value='logo.png', height=200, width=200)
with gr.Column(scale=6):
gr.HTML("""
<center>
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
<i>โ ๏ธ Students can create quiz from any topic from 9th Science and evaluate themselves! โ ๏ธ</i>
</center>
""")
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from 9TH Science CBSE")
with gr.Row():
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
model_radio = gr.Radio(choices=['(ACCURATE) BGE reranker'], value='(ACCURATE) BGE reranker', label="Embeddings") # Removed ColBERT option
generate_quiz_btn = gr.Button("Generate Quiz!๐")
quiz_msg = gr.Textbox(label="Status", interactive=False)
question_display = gr.HTML(visible=False)
download_excel = gr.File(label="Download Excel")
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg, question_display, download_excel])
def generate_quiz(question_difficulty, topic, cross_encoder):
top_k_rank = 10
documents = []
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
document_start = perf_counter()
query_vec = retriever.encode(topic)
documents = [doc[TEXT_COLUMN_NAME] for doc in table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()]
if cross_encoder == '(ACCURATE) BGE reranker':
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
query_doc_pair = [[topic, doc] for doc in documents]
cross_scores = cross_encoder1.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
documents_str = '\n'.join(documents)
quiz_data = generate_quiz_data(question_difficulty, topic, documents_str)
if not quiz_data or not quiz_data.items:
return ["Error: Failed to generate quiz.", gr.HTML(visible=False), None]
excel_file = json_to_excel(quiz_data)
html_content = "<div>" + "".join(f"<h3>{i}. {item.question}</h3><p>{'<br>'.join(item.choices)}</p>" for i, item in enumerate(quiz_data.items[:10], 1)) + "</div>"
return ["Quiz Generated!", gr.HTML(value=html_content, visible=True), excel_file]
check_button = gr.Button("Check Score")
score_textbox = gr.Markdown()
@check_button.click(inputs=question_display, outputs=score_textbox)
def compare_answers(html_content):
if not quiz_data or not quiz_data.items:
return "Please generate a quiz first."
# Placeholder for user answers (adjust based on actual UI implementation)
user_answers = [] # Implement parsing logic if using radio inputs
correct_answers = [item.correct_answer for item in quiz_data.items[:10]]
score = sum(1 for u, c in zip(user_answers, correct_answers) if u == c)
if score > 7:
message = f"### Excellent! You got {score} out of 10!"
elif score > 5:
message = f"### Good! You got {score} out of 10!"
else:
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
return message
if __name__ == "__main__":
QUIZBOT.queue().launch(debug=True)
# # Importing libraries
# import pandas as pd
# import json
# import gradio as gr
# from pathlib import Path
# from ragatouille import RAGPretrainedModel
# from gradio_client import Client
# from tempfile import NamedTemporaryFile
# from sentence_transformers import CrossEncoder
# import numpy as np
# from time import perf_counter
# from sentence_transformers import CrossEncoder
# #calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz
# from backend.semantic_search import table, retriever
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# proj_dir = Path.cwd()
# # Set up logging
# import logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Replace Mixtral client with Qwen Client
# client = Client("Qwen/Qwen1.5-110B-Chat-demo")
# def system_instructions(question_difficulty, topic, documents_str):
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
# # Ragatouille database for Colbert ie highly accurate mode
# RAG_db = gr.State()
# quiz_data = None
# #defining a function to convert json file to excel file
# def json_to_excel(output_json):
# # Initialize list for DataFrame
# data = []
# gr.Warning('Generating Shareable file link..', duration=30)
# for i in range(1, 11): # Assuming there are 10 questions
# question_key = f"Q{i}"
# answer_key = f"A{i}"
# question = output_json.get(question_key, '')
# correct_answer_key = output_json.get(answer_key, '')
# #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
# correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
# # Extract options
# option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
# options = [output_json.get(key, '') for key in option_keys]
# # Add data row
# data.append([
# question, # Question Text
# "Multiple Choice", # Question Type
# options[0], # Option 1
# options[1], # Option 2
# options[2] if len(options) > 2 else '', # Option 3
# options[3] if len(options) > 3 else '', # Option 4
# options[4] if len(options) > 4 else '', # Option 5
# correct_answer, # Correct Answer
# 30, # Time in seconds
# '' # Image Link
# ])
# # Create DataFrame
# df = pd.DataFrame(data, columns=[
# "Question Text",
# "Question Type",
# "Option 1",
# "Option 2",
# "Option 3",
# "Option 4",
# "Option 5",
# "Correct Answer",
# "Time in seconds",
# "Image Link"
# ])
# temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
# df.to_excel(temp_file.name, index=False)
# return temp_file.name
# # Define a colorful theme
# colorful_theme = gr.themes.Default(
# primary_hue="cyan", # Set a bright cyan as primary color
# secondary_hue="yellow", # Set a bright magenta as secondary color
# neutral_hue="purple" # Optionally set a neutral color
# )
# #gradio app creation for a user interface
# with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
# # Create a single row for the HTML and Image
# with gr.Row():
# with gr.Column(scale=2):
# gr.Image(value='logo.png', height=200, width=200)
# with gr.Column(scale=6):
# gr.HTML("""
# <center>
# <h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
# <h2>Generative AI-powered Capacity building for STUDENTS</h2>
# <i>โ ๏ธ Students can create quiz from any topic from 10 science and evaluate themselves! โ ๏ธ</i>
# </center>
# """)
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME")
# with gr.Row():
# difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
# model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
# value='(ACCURATE) BGE reranker', label="Embeddings",
# info="First query to ColBERT may take a little time")
# generate_quiz_btn = gr.Button("Generate Quiz!๐")
# quiz_msg = gr.Textbox()
# question_radios = [gr.Radio(visible=False) for _ in range(10)]
# @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
# def generate_quiz(question_difficulty, topic, cross_encoder):
# top_k_rank = 10
# documents = []
# gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
# if cross_encoder == '(HIGH ACCURATE) ColBERT':
# gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# documents_full = RAG_db.value.search(topic, k=top_k_rank)
# documents = [item['content'] for item in documents_full]
# else:
# document_start = perf_counter()
# query_vec = retriever.encode(topic)
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
# query_doc_pair = [[topic, doc] for doc in documents]
# # if cross_encoder == '(FAST) MiniLM-L6v2':
# # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# if cross_encoder == '(ACCURATE) BGE reranker':
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
# cross_scores = cross_encoder1.predict(query_doc_pair)
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
# #creating a text prompt to Qwen model combining the documents and system instruction
# formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
# print(' Formatted Prompt : ' ,formatted_prompt)
# try:
# response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
# response1 = response[1][0][1]
# # Extract JSON
# start_index = response1.find('{')
# end_index = response1.rfind('}')
# cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
# print('Cleaned Response :',cleaned_response)
# output_json = json.loads(cleaned_response)
# # Assign the extracted JSON to quiz_data for use in the comparison function
# global quiz_data
# quiz_data = output_json
# # Generate the Excel file
# excel_file = json_to_excel(output_json)
# #Create a Quiz display in app
# question_radio_list = []
# for question_num in range(1, 11):
# question_key = f"Q{question_num}"
# answer_key = f"A{question_num}"
# question = output_json.get(question_key)
# answer = output_json.get(output_json.get(answer_key))
# if not question or not answer:
# continue
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
# choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
# question_radio_list.append(radio)
# return ['Quiz Generated!'] + question_radio_list + [excel_file]
# except json.JSONDecodeError as e:
# print(f"Failed to decode JSON: {e}")
# check_button = gr.Button("Check Score")
# score_textbox = gr.Markdown()
# @check_button.click(inputs=question_radios, outputs=score_textbox)
# def compare_answers(*user_answers):
# user_answer_list = list(user_answers)
# answers_list = []
# for question_num in range(1, 11):
# answer_key = f"A{question_num}"
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not answer:
# break
# answers_list.append(answer)
# score = sum(1 for item in user_answer_list if item in answers_list)
# if score > 7:
# message = f"### Excellent! You got {score} out of 10!"
# elif score > 5:
# message = f"### Good! You got {score} out of 10!"
# else:
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
# return message
# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)
|