File size: 17,645 Bytes
b5144da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import gradio as gr
from pathlib import Path
from tempfile import NamedTemporaryFile
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter
import pandas as pd
from pydantic import BaseModel, Field
from phi.agent import Agent
from phi.model.groq import Groq
import os
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# API Key setup
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
    gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
    logger.error("GROQ_API_KEY not found.")
else:
    os.environ["GROQ_API_KEY"] = api_key

# Pydantic Model for Quiz Structure
class QuizItem(BaseModel):
    question: str = Field(..., description="The quiz question")
    choices: list[str] = Field(..., description="List of 4 multiple-choice options")
    correct_answer: str = Field(..., description="The correct choice (e.g., 'C1')")

class QuizOutput(BaseModel):
    items: list[QuizItem] = Field(..., description="List of 10 quiz items")

# Initialize Agents
groq_agent = Agent(model=Groq(model="llama3-70b-8192", api_key=api_key), markdown=True)

quiz_generator = Agent(
    name="Quiz Generator",
    role="Generates structured quiz questions and answers",
    instructions=[
        "Create 10 questions with 4 choices each based on the provided topic and documents.",
        "Use the specified difficulty level (easy, average, hard) to adjust question complexity.",
        "Ensure questions are derived only from the provided documents.",
        "Return the output in a structured format using the QuizOutput Pydantic model.",
        "Each question should have a unique correct answer from the choices (labeled C1, C2, C3, C4)."
    ],
    model=Groq(id="llama3-70b-8192", api_key=api_key),
    response_model=QuizOutput,
    markdown=True
)

VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()

# Calling functions from backend (assuming they exist)
from backend.semantic_search import table, retriever

def generate_quiz_data(question_difficulty, topic, documents_str):
    prompt = f"""Generate a quiz with {question_difficulty} difficulty on topic '{topic}' using only the following documents:\n{documents_str}"""
    try:
        response = quiz_generator.run(prompt)
        return response.content
    except Exception as e:
        logger.error(f"Failed to generate quiz: {e}")
        return None

def json_to_excel(quiz_data):
    data = []
    gr.Warning('Generating Shareable file link..', duration=30)
    for i, item in enumerate(quiz_data.items, 1):
        data.append([
            item.question,
            "Multiple Choice",
            item.choices[0],
            item.choices[1],
            item.choices[2],
            item.choices[3],
            '',  # Option 5 (empty)
            item.correct_answer.replace('C', ''),
            30,
            ''
        ])
    df = pd.DataFrame(data, columns=[
        "Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Option 5", "Correct Answer", "Time in seconds", "Image Link"
    ])
    temp_file = NamedTemporaryFile(delete=True, suffix=".xlsx")
    df.to_excel(temp_file.name, index=False)
    return temp_file.name

colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple")

with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
    with gr.Row():
        with gr.Column(scale=2):
            gr.Image(value='logo.png', height=200, width=200)
        with gr.Column(scale=6):
            gr.HTML("""

            <center>

                <h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>

                <h2>Generative AI-powered Capacity building for STUDENTS</h2>

                <i>โš ๏ธ Students can create quiz from any topic from 9th Science and evaluate themselves! โš ๏ธ</i>

            </center>

            """)

    topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from 9TH Science CBSE")
    with gr.Row():
        difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
        model_radio = gr.Radio(choices=['(ACCURATE) BGE reranker'], value='(ACCURATE) BGE reranker', label="Embeddings")  # Removed ColBERT option

    generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
    quiz_msg = gr.Textbox(label="Status", interactive=False)
    question_display = gr.HTML(visible=False)
    download_excel = gr.File(label="Download Excel")

    @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg, question_display, download_excel])
    def generate_quiz(question_difficulty, topic, cross_encoder):
        top_k_rank = 10
        documents = []
        gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)

        document_start = perf_counter()
        query_vec = retriever.encode(topic)
        documents = [doc[TEXT_COLUMN_NAME] for doc in table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()]
        if cross_encoder == '(ACCURATE) BGE reranker':
            cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
            query_doc_pair = [[topic, doc] for doc in documents]
            cross_scores = cross_encoder1.predict(query_doc_pair)
            sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
            documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]

        documents_str = '\n'.join(documents)
        quiz_data = generate_quiz_data(question_difficulty, topic, documents_str)
        if not quiz_data or not quiz_data.items:
            return ["Error: Failed to generate quiz.", gr.HTML(visible=False), None]

        excel_file = json_to_excel(quiz_data)
        html_content = "<div>" + "".join(f"<h3>{i}. {item.question}</h3><p>{'<br>'.join(item.choices)}</p>" for i, item in enumerate(quiz_data.items[:10], 1)) + "</div>"
        return ["Quiz Generated!", gr.HTML(value=html_content, visible=True), excel_file]

    check_button = gr.Button("Check Score")
    score_textbox = gr.Markdown()

    @check_button.click(inputs=question_display, outputs=score_textbox)
    def compare_answers(html_content):
        if not quiz_data or not quiz_data.items:
            return "Please generate a quiz first."
        # Placeholder for user answers (adjust based on actual UI implementation)
        user_answers = []  # Implement parsing logic if using radio inputs
        correct_answers = [item.correct_answer for item in quiz_data.items[:10]]
        score = sum(1 for u, c in zip(user_answers, correct_answers) if u == c)
        if score > 7:
            message = f"### Excellent! You got {score} out of 10!"
        elif score > 5:
            message = f"### Good! You got {score} out of 10!"
        else:
            message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
        return message

if __name__ == "__main__":
    QUIZBOT.queue().launch(debug=True)

# # Importing libraries
# import pandas as pd
# import json
# import gradio as gr
# from pathlib import Path
# from ragatouille import RAGPretrainedModel
# from gradio_client import Client
# from tempfile import NamedTemporaryFile
# from sentence_transformers import CrossEncoder
# import numpy as np
# from time import perf_counter
# from sentence_transformers import CrossEncoder

# #calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz  
# from backend.semantic_search import table, retriever

# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# proj_dir = Path.cwd()

# # Set up logging
# import logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # Replace Mixtral client with Qwen Client
# client = Client("Qwen/Qwen1.5-110B-Chat-demo")

# def system_instructions(question_difficulty, topic, documents_str):
#     return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""

# # Ragatouille database for Colbert ie highly accurate mode
# RAG_db = gr.State()
# quiz_data = None


# #defining a function to convert json file to excel file 
# def json_to_excel(output_json):
#     # Initialize list for DataFrame
#     data = []
#     gr.Warning('Generating Shareable file link..', duration=30)
#     for i in range(1, 11):  # Assuming there are 10 questions
#         question_key = f"Q{i}"
#         answer_key = f"A{i}"

#         question = output_json.get(question_key, '')
#         correct_answer_key = output_json.get(answer_key, '')
#         #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
#         correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''

#         # Extract options
#         option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
#         options = [output_json.get(key, '') for key in option_keys]
        
#         # Add data row
#         data.append([
#             question,                     # Question Text
#             "Multiple Choice",            # Question Type
#             options[0],                   # Option 1
#             options[1],                   # Option 2
#             options[2] if len(options) > 2 else '',  # Option 3
#             options[3] if len(options) > 3 else '',  # Option 4
#             options[4] if len(options) > 4 else '',  # Option 5
#             correct_answer,               # Correct Answer
#             30,                           # Time in seconds
#             ''                            # Image Link
#         ])

#     # Create DataFrame
#     df = pd.DataFrame(data, columns=[
#         "Question Text",
#         "Question Type",
#         "Option 1",
#         "Option 2",
#         "Option 3",
#         "Option 4",
#         "Option 5",
#         "Correct Answer",
#         "Time in seconds",
#         "Image Link"
#     ])

#     temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
#     df.to_excel(temp_file.name, index=False)
#     return temp_file.name
# # Define a colorful theme
# colorful_theme = gr.themes.Default(
#     primary_hue="cyan",      # Set a bright cyan as primary color
#     secondary_hue="yellow", # Set a bright magenta as secondary color
#     neutral_hue="purple"  # Optionally set a neutral color
        
# )

# #gradio app creation for a user interface 
# with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
    
    
#     # Create a single row for the HTML and Image
#     with gr.Row():
#         with gr.Column(scale=2):
#             gr.Image(value='logo.png', height=200, width=200)
#         with gr.Column(scale=6):
#             gr.HTML("""
#             <center>
#                 <h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
#                 <h2>Generative AI-powered Capacity building for STUDENTS</h2>
#                 <i>โš ๏ธ Students can create quiz from any topic from 10 science and evaluate themselves! โš ๏ธ</i>
#             </center>
#             """)
        


    
#     topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME")

#     with gr.Row():
#         difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
#         model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], 
#                                value='(ACCURATE) BGE reranker', label="Embeddings", 
#                                info="First query to ColBERT may take a little time")

#     generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
#     quiz_msg = gr.Textbox()

#     question_radios = [gr.Radio(visible=False) for _ in range(10)]

#     @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
#     def generate_quiz(question_difficulty, topic, cross_encoder):
#         top_k_rank = 10
#         documents = []
#         gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)

#         if cross_encoder == '(HIGH ACCURATE) ColBERT':
#             gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
#             RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
#             RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
#             documents_full = RAG_db.value.search(topic, k=top_k_rank)
#             documents = [item['content'] for item in documents_full]
        
#         else:
#             document_start = perf_counter()
#             query_vec = retriever.encode(topic)
#             doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)

#             documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
#             documents = [doc[TEXT_COLUMN_NAME] for doc in documents]

#             query_doc_pair = [[topic, doc] for doc in documents]

#             # if cross_encoder == '(FAST) MiniLM-L6v2':
#             #     cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
#             if cross_encoder == '(ACCURATE) BGE reranker':
#                 cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
            
#             cross_scores = cross_encoder1.predict(query_doc_pair)
#             sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
#             documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]

#         #creating a text prompt to Qwen model combining the documents and system instruction 
#         formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
#         print('                      Formatted Prompt : ' ,formatted_prompt)
#         try:
#             response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
#             response1 = response[1][0][1]
            
#             # Extract JSON
#             start_index = response1.find('{')
#             end_index = response1.rfind('}')
#             cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
#             print('Cleaned Response :',cleaned_response)
#             output_json = json.loads(cleaned_response)
#             # Assign the extracted JSON to quiz_data for use in the comparison function
#             global quiz_data
#             quiz_data = output_json
#             # Generate the Excel file
#             excel_file = json_to_excel(output_json)
            

#             #Create a Quiz display in app
#             question_radio_list = []
#             for question_num in range(1, 11):
#                 question_key = f"Q{question_num}"
#                 answer_key = f"A{question_num}"

#                 question = output_json.get(question_key)
#                 answer = output_json.get(output_json.get(answer_key))

#                 if not question or not answer:
#                     continue

#                 choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
#                 choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]

#                 radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
#                 question_radio_list.append(radio)

#             return ['Quiz Generated!'] + question_radio_list + [excel_file]

#         except json.JSONDecodeError as e:
#             print(f"Failed to decode JSON: {e}")

#     check_button = gr.Button("Check Score")
#     score_textbox = gr.Markdown()

#     @check_button.click(inputs=question_radios, outputs=score_textbox)
#     def compare_answers(*user_answers):
#         user_answer_list = list(user_answers)
#         answers_list = []

#         for question_num in range(1, 11):
#             answer_key = f"A{question_num}"
#             answer = quiz_data.get(quiz_data.get(answer_key))
#             if not answer:
#                 break
#             answers_list.append(answer)

#         score = sum(1 for item in user_answer_list if item in answers_list)

#         if score > 7:
#             message = f"### Excellent! You got {score} out of 10!"
#         elif score > 5:
#             message = f"### Good! You got {score} out of 10!"
#         else:
#             message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"

#         return message

# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)