Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,12 @@ import re
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import os
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
set_seed(42)
|
10 |
|
11 |
# Define the six premium generation models:
|
@@ -33,30 +37,32 @@ grammar_model_names = [
|
|
33 |
"hassaanik/grammar-correction-model"
|
34 |
]
|
35 |
|
36 |
-
# Function to load generation pipelines
|
37 |
def load_generation_pipeline(model_name):
|
38 |
try:
|
39 |
-
|
|
|
|
|
40 |
except Exception as e:
|
41 |
print(f"Error loading generation model {model_name}: {e}")
|
42 |
return None
|
43 |
|
44 |
-
# Function to load grammar evaluation pipelines
|
45 |
def load_grammar_pipeline(model_name):
|
46 |
try:
|
47 |
-
|
|
|
48 |
except Exception as e:
|
49 |
print(f"Error loading grammar model {model_name}: {e}")
|
50 |
return None
|
51 |
|
52 |
-
# Pre-load grammar evaluators
|
53 |
rater_models = []
|
54 |
for model_name in grammar_model_names:
|
55 |
p = load_grammar_pipeline(model_name)
|
56 |
if p is not None:
|
57 |
rater_models.append(p)
|
58 |
|
59 |
-
# Utility functions to clean text and check for palindromes
|
60 |
def clean_text(text):
|
61 |
return re.sub(r'[^a-zA-Z0-9]', '', text.lower())
|
62 |
|
@@ -64,16 +70,15 @@ def is_palindrome(text):
|
|
64 |
cleaned = clean_text(text)
|
65 |
return cleaned == cleaned[::-1]
|
66 |
|
67 |
-
#
|
68 |
def build_prompt(lang):
|
69 |
return (
|
70 |
f"Instruction: Generate a single original palindrome in {lang}.\n"
|
71 |
"Output only the palindrome. The palindrome should be a continuous text that reads the same forward and backward.\n"
|
72 |
-
"Do not output any additional text or
|
73 |
"Palindrome: "
|
74 |
)
|
75 |
|
76 |
-
# Build prompt for grammar evaluation
|
77 |
def grammar_prompt(pal, lang):
|
78 |
return (
|
79 |
f"Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. "
|
@@ -81,7 +86,6 @@ def grammar_prompt(pal, lang):
|
|
81 |
f'"{pal}"\n'
|
82 |
)
|
83 |
|
84 |
-
# Extract numeric score from text output
|
85 |
def extract_score(text):
|
86 |
match = re.search(r"\d{1,3}", text)
|
87 |
if match:
|
@@ -89,7 +93,7 @@ def extract_score(text):
|
|
89 |
return min(max(score, 0), 100)
|
90 |
return 0
|
91 |
|
92 |
-
# Main benchmark function
|
93 |
def run_benchmark_all():
|
94 |
results = []
|
95 |
for model_name in premium_models:
|
@@ -105,7 +109,6 @@ def run_benchmark_all():
|
|
105 |
valid = is_palindrome(gen_output)
|
106 |
cleaned_len = len(clean_text(gen_output))
|
107 |
|
108 |
-
# Evaluate grammar using both grammar models
|
109 |
scores = []
|
110 |
for rater in rater_models:
|
111 |
rprompt = grammar_prompt(gen_output, lang)
|
@@ -135,12 +138,11 @@ def run_benchmark_all():
|
|
135 |
print(f"CSV saved to {os.path.abspath(csv_path)}")
|
136 |
return gr.Dataframe(df), csv_path
|
137 |
|
138 |
-
# Build the Gradio UI using a Blocks layout
|
139 |
with gr.Blocks(title="Premium Model Palindrome Benchmark") as demo:
|
140 |
gr.Markdown("# Premium Model Palindrome Benchmark")
|
141 |
gr.Markdown(
|
142 |
-
"This benchmark runs automatically over 6 premium text-generation models across 5 languages "
|
143 |
-
"
|
144 |
)
|
145 |
with gr.Row():
|
146 |
run_button = gr.Button("Run All Benchmarks")
|
|
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
import os
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# Check if CUDA (GPU) is available
|
10 |
+
print("CUDA available:", torch.cuda.is_available())
|
11 |
+
|
12 |
+
# Set a seed for reproducibility
|
13 |
set_seed(42)
|
14 |
|
15 |
# Define the six premium generation models:
|
|
|
37 |
"hassaanik/grammar-correction-model"
|
38 |
]
|
39 |
|
40 |
+
# Function to load generation pipelines, specifying GPU if available.
|
41 |
def load_generation_pipeline(model_name):
|
42 |
try:
|
43 |
+
# Use device=0 if GPU is available; otherwise, use CPU (device=-1)
|
44 |
+
device = 0 if torch.cuda.is_available() else -1
|
45 |
+
return pipeline("text-generation", model=model_name, device=device)
|
46 |
except Exception as e:
|
47 |
print(f"Error loading generation model {model_name}: {e}")
|
48 |
return None
|
49 |
|
50 |
+
# Function to load grammar evaluation pipelines.
|
51 |
def load_grammar_pipeline(model_name):
|
52 |
try:
|
53 |
+
device = 0 if torch.cuda.is_available() else -1
|
54 |
+
return pipeline("text2text-generation", model=model_name, device=device)
|
55 |
except Exception as e:
|
56 |
print(f"Error loading grammar model {model_name}: {e}")
|
57 |
return None
|
58 |
|
59 |
+
# Pre-load grammar evaluators.
|
60 |
rater_models = []
|
61 |
for model_name in grammar_model_names:
|
62 |
p = load_grammar_pipeline(model_name)
|
63 |
if p is not None:
|
64 |
rater_models.append(p)
|
65 |
|
|
|
66 |
def clean_text(text):
|
67 |
return re.sub(r'[^a-zA-Z0-9]', '', text.lower())
|
68 |
|
|
|
70 |
cleaned = clean_text(text)
|
71 |
return cleaned == cleaned[::-1]
|
72 |
|
73 |
+
# Updated prompt: instruct output to contain only the palindrome.
|
74 |
def build_prompt(lang):
|
75 |
return (
|
76 |
f"Instruction: Generate a single original palindrome in {lang}.\n"
|
77 |
"Output only the palindrome. The palindrome should be a continuous text that reads the same forward and backward.\n"
|
78 |
+
"Do not output any additional text, commentary, or the prompt itself.\n"
|
79 |
"Palindrome: "
|
80 |
)
|
81 |
|
|
|
82 |
def grammar_prompt(pal, lang):
|
83 |
return (
|
84 |
f"Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. "
|
|
|
86 |
f'"{pal}"\n'
|
87 |
)
|
88 |
|
|
|
89 |
def extract_score(text):
|
90 |
match = re.search(r"\d{1,3}", text)
|
91 |
if match:
|
|
|
93 |
return min(max(score, 0), 100)
|
94 |
return 0
|
95 |
|
96 |
+
# Main benchmark function that runs tests and saves CSV results.
|
97 |
def run_benchmark_all():
|
98 |
results = []
|
99 |
for model_name in premium_models:
|
|
|
109 |
valid = is_palindrome(gen_output)
|
110 |
cleaned_len = len(clean_text(gen_output))
|
111 |
|
|
|
112 |
scores = []
|
113 |
for rater in rater_models:
|
114 |
rprompt = grammar_prompt(gen_output, lang)
|
|
|
138 |
print(f"CSV saved to {os.path.abspath(csv_path)}")
|
139 |
return gr.Dataframe(df), csv_path
|
140 |
|
|
|
141 |
with gr.Blocks(title="Premium Model Palindrome Benchmark") as demo:
|
142 |
gr.Markdown("# Premium Model Palindrome Benchmark")
|
143 |
gr.Markdown(
|
144 |
+
"This benchmark runs automatically over 6 premium text-generation models across 5 languages and saves the results "
|
145 |
+
"to a CSV file upon completion."
|
146 |
)
|
147 |
with gr.Row():
|
148 |
run_button = gr.Button("Run All Benchmarks")
|