update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
|
|
|
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
from huggingface_hub import snapshot_download
|
6 |
|
@@ -29,52 +31,152 @@ from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
29 |
from src.submission.submit import add_new_eval
|
30 |
|
31 |
def restart_space():
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
### Space initialization
|
35 |
try:
|
36 |
-
print(EVAL_REQUESTS_PATH)
|
37 |
snapshot_download(
|
38 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset",
|
|
|
39 |
)
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
try:
|
43 |
-
print(EVAL_RESULTS_PATH)
|
44 |
snapshot_download(
|
45 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset",
|
|
|
46 |
)
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Load the leaderboard DataFrame
|
51 |
-
|
52 |
-
|
53 |
-
print("LEADERBOARD_DF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
# Load the evaluation queue DataFrames
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
with demo:
|
60 |
gr.HTML(TITLE)
|
61 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
62 |
|
63 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
64 |
-
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab
|
65 |
if LEADERBOARD_DF.empty:
|
66 |
gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
|
67 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
|
69 |
-
print("Default Selection before ensuring 'model_name':", default_selection)
|
70 |
|
71 |
# Ensure "model_name" is included
|
72 |
if "model_name" not in default_selection:
|
73 |
default_selection.insert(0, "model_name")
|
74 |
-
print("Default Selection after ensuring 'model_name':", default_selection)
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
|
|
78 |
leaderboard = Leaderboard(
|
79 |
value=LEADERBOARD_DF,
|
80 |
datatype=[col.type for col in COLUMNS],
|
@@ -83,7 +185,7 @@ with demo:
|
|
83 |
cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
|
84 |
label="Select Columns to Display:",
|
85 |
),
|
86 |
-
search_columns=[
|
87 |
hide_columns=[col.name for col in COLUMNS if col.hidden],
|
88 |
filter_columns=[
|
89 |
ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
|
@@ -93,14 +195,13 @@ with demo:
|
|
93 |
),
|
94 |
],
|
95 |
bool_checkboxgroup_label="Hide models",
|
96 |
-
interactive=
|
97 |
)
|
98 |
-
# No need to call leaderboard.render() since it's created within the Gradio context
|
99 |
|
100 |
-
with gr.TabItem("π About", elem_id="
|
101 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
102 |
|
103 |
-
with gr.TabItem("π Submit here!
|
104 |
with gr.Column():
|
105 |
with gr.Row():
|
106 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
@@ -167,6 +268,13 @@ with demo:
|
|
167 |
)
|
168 |
|
169 |
scheduler = BackgroundScheduler()
|
|
|
170 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
171 |
scheduler.start()
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
+
import os
|
5 |
+
import json
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
from huggingface_hub import snapshot_download
|
8 |
|
|
|
31 |
from src.submission.submit import add_new_eval
|
32 |
|
33 |
def restart_space():
|
34 |
+
try:
|
35 |
+
API.restart_space(repo_id=REPO_ID)
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error restarting space: {e}")
|
38 |
+
|
39 |
+
# Ensure directories exist
|
40 |
+
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
|
41 |
+
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
42 |
|
43 |
### Space initialization
|
44 |
try:
|
45 |
+
print(f"Downloading evaluation requests from {QUEUE_REPO} to {EVAL_REQUESTS_PATH}")
|
46 |
snapshot_download(
|
47 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset",
|
48 |
+
tqdm_class=None, etag_timeout=30, token=TOKEN
|
49 |
)
|
50 |
+
print("Successfully downloaded evaluation requests")
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error downloading evaluation requests: {e}")
|
53 |
+
# Don't restart immediately, try to continue
|
54 |
+
|
55 |
try:
|
56 |
+
print(f"Downloading evaluation results from {RESULTS_REPO} to {EVAL_RESULTS_PATH}")
|
57 |
snapshot_download(
|
58 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset",
|
59 |
+
tqdm_class=None, etag_timeout=30, token=TOKEN
|
60 |
)
|
61 |
+
print("Successfully downloaded evaluation results")
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Error downloading evaluation results: {e}")
|
64 |
+
# Don't restart immediately, try to continue
|
65 |
+
|
66 |
+
# Add fallback data in case the remote fetch fails
|
67 |
+
fallback_data = False
|
68 |
+
if not os.listdir(EVAL_RESULTS_PATH):
|
69 |
+
print("No evaluation results found. Creating sample data for testing.")
|
70 |
+
fallback_data = True
|
71 |
+
# Create a sample result file for testing
|
72 |
+
sample_data = {
|
73 |
+
"config": {
|
74 |
+
"model_name": "Sample Arabic Model",
|
75 |
+
"submitted_time": "2023-01-01",
|
76 |
+
"base_model": "bert-base-arabic",
|
77 |
+
"revision": "main",
|
78 |
+
"precision": "float16",
|
79 |
+
"weight_type": "Original",
|
80 |
+
"model_type": "Encoder",
|
81 |
+
"license": "Apache-2.0",
|
82 |
+
"params": 110000000,
|
83 |
+
"still_on_hub": True
|
84 |
+
},
|
85 |
+
"results": {
|
86 |
+
"average": 75.5,
|
87 |
+
"abstract_algebra": 70.2,
|
88 |
+
"anatomy": 72.5,
|
89 |
+
"astronomy": 80.1,
|
90 |
+
"business_ethics": 68.3,
|
91 |
+
"clinical_knowledge": 75.0,
|
92 |
+
"college_biology": 77.4,
|
93 |
+
"college_chemistry": 74.2
|
94 |
+
}
|
95 |
+
}
|
96 |
+
|
97 |
+
with open(os.path.join(EVAL_RESULTS_PATH, "sample_result.json"), 'w') as f:
|
98 |
+
json.dump(sample_data, f)
|
99 |
|
100 |
# Load the leaderboard DataFrame
|
101 |
+
try:
|
102 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
103 |
+
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)
|
104 |
+
print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist())
|
105 |
+
print("LEADERBOARD_DF Sample:", LEADERBOARD_DF.head(1).to_dict('records') if not LEADERBOARD_DF.empty else "Empty DataFrame")
|
106 |
+
|
107 |
+
# If DataFrame is empty even with fallback data, create a minimal sample
|
108 |
+
if LEADERBOARD_DF.empty and fallback_data:
|
109 |
+
print("Creating minimal sample data for leaderboard")
|
110 |
+
LEADERBOARD_DF = pd.DataFrame([{
|
111 |
+
"model_name": "Sample Arabic LLM",
|
112 |
+
"submitted_time": "2023-01-01",
|
113 |
+
"base_model": "bert-base-arabic",
|
114 |
+
"revision": "main",
|
115 |
+
"precision": "float16",
|
116 |
+
"weight_type": "Original",
|
117 |
+
"model_type": "Encoder",
|
118 |
+
"license": "Apache-2.0",
|
119 |
+
"params": 110000000,
|
120 |
+
"still_on_hub": True,
|
121 |
+
"average": 75.5,
|
122 |
+
"abstract_algebra": 70.2,
|
123 |
+
"anatomy": 72.5,
|
124 |
+
"astronomy": 80.1,
|
125 |
+
"business_ethics": 68.3,
|
126 |
+
"clinical_knowledge": 75.0,
|
127 |
+
"college_biology": 77.4,
|
128 |
+
"college_chemistry": 74.2
|
129 |
+
}])
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Error loading leaderboard data: {e}")
|
132 |
+
# Create a minimal sample DataFrame
|
133 |
+
LEADERBOARD_DF = pd.DataFrame([{
|
134 |
+
"model_name": "Error Loading Data",
|
135 |
+
"average": 0
|
136 |
+
}])
|
137 |
|
138 |
# Load the evaluation queue DataFrames
|
139 |
+
try:
|
140 |
+
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
141 |
+
except Exception as e:
|
142 |
+
print(f"Error loading evaluation queue data: {e}")
|
143 |
+
# Create empty DataFrames
|
144 |
+
finished_eval_queue_df = pd.DataFrame(columns=EVAL_COLS)
|
145 |
+
running_eval_queue_df = pd.DataFrame(columns=EVAL_COLS)
|
146 |
+
pending_eval_queue_df = pd.DataFrame(columns=EVAL_COLS)
|
147 |
|
148 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
|
|
149 |
gr.HTML(TITLE)
|
150 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
151 |
|
152 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
153 |
+
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab", id=0):
|
154 |
if LEADERBOARD_DF.empty:
|
155 |
gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
|
156 |
else:
|
157 |
+
# Debug information as Markdown
|
158 |
+
gr.Markdown("### Leaderboard Data Debug Info")
|
159 |
+
gr.Markdown(f"DataFrame Shape: {LEADERBOARD_DF.shape}")
|
160 |
+
gr.Markdown(f"DataFrame Columns: {LEADERBOARD_DF.columns.tolist()}")
|
161 |
+
|
162 |
+
# Get the default columns to display
|
163 |
default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
|
164 |
+
print("Default Selection before ensuring 'model_name':", default_selection)
|
165 |
|
166 |
# Ensure "model_name" is included
|
167 |
if "model_name" not in default_selection:
|
168 |
default_selection.insert(0, "model_name")
|
169 |
+
print("Default Selection after ensuring 'model_name':", default_selection)
|
170 |
|
171 |
+
# Make sure all columns exist in the DataFrame
|
172 |
+
for col in default_selection:
|
173 |
+
if col not in LEADERBOARD_DF.columns:
|
174 |
+
print(f"Warning: Column '{col}' not found in DataFrame. Adding empty column.")
|
175 |
+
LEADERBOARD_DF[col] = None
|
176 |
+
|
177 |
+
print("LEADERBOARD_DF dtypes:\n", LEADERBOARD_DF.dtypes)
|
178 |
|
179 |
+
# Create the leaderboard component
|
180 |
leaderboard = Leaderboard(
|
181 |
value=LEADERBOARD_DF,
|
182 |
datatype=[col.type for col in COLUMNS],
|
|
|
185 |
cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
|
186 |
label="Select Columns to Display:",
|
187 |
),
|
188 |
+
search_columns=["model_name", "license"],
|
189 |
hide_columns=[col.name for col in COLUMNS if col.hidden],
|
190 |
filter_columns=[
|
191 |
ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
|
|
|
195 |
),
|
196 |
],
|
197 |
bool_checkboxgroup_label="Hide models",
|
198 |
+
interactive=True, # Change to True to enable interaction
|
199 |
)
|
|
|
200 |
|
201 |
+
with gr.TabItem("π About", elem_id="about-tab", id=1):
|
202 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
203 |
|
204 |
+
with gr.TabItem("π Submit here!", elem_id="submit-tab", id=2):
|
205 |
with gr.Column():
|
206 |
with gr.Row():
|
207 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
268 |
)
|
269 |
|
270 |
scheduler = BackgroundScheduler()
|
271 |
+
# Run every 30 minutes instead of every 30 seconds (1800 seconds = 30 minutes)
|
272 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
273 |
scheduler.start()
|
274 |
+
|
275 |
+
# Launch with a more descriptive message
|
276 |
+
demo.queue(default_concurrency_limit=40).launch(
|
277 |
+
debug=True,
|
278 |
+
share=False,
|
279 |
+
show_error=True
|
280 |
+
)
|