Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
Β·
6efebdc
1
Parent(s):
9440e3a
Add retrieval and reranking leaderboard modules, update requirements and README
Browse files- .gitignore +177 -0
- README.md +1 -1
- app.py +10 -211
- leaderboard_tab.py +122 -0
- llm_in_context_leaderboard.py +152 -0
- requirements.txt +2 -1
- reranking_leaderboard.py +87 -0
- results/reranking_results.json +453 -189
- results/retrieval_results.json +72 -120
- retrieval_leaderboard.py +87 -0
- utils.py +20 -45
.gitignore
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by https://www.toptal.com/developers/gitignore/api/python
|
2 |
+
# Edit at https://www.toptal.com/developers/gitignore?templates=python
|
3 |
+
|
4 |
+
### Python ###
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py,cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
cover/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
.pybuilder/
|
80 |
+
target/
|
81 |
+
|
82 |
+
# Jupyter Notebook
|
83 |
+
.ipynb_checkpoints
|
84 |
+
|
85 |
+
# IPython
|
86 |
+
profile_default/
|
87 |
+
ipython_config.py
|
88 |
+
|
89 |
+
# pyenv
|
90 |
+
# For a library or package, you might want to ignore these files since the code is
|
91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
92 |
+
# .python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# poetry
|
102 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
104 |
+
# commonly ignored for libraries.
|
105 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
106 |
+
#poetry.lock
|
107 |
+
|
108 |
+
# pdm
|
109 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
110 |
+
#pdm.lock
|
111 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
112 |
+
# in version control.
|
113 |
+
# https://pdm.fming.dev/#use-with-ide
|
114 |
+
.pdm.toml
|
115 |
+
|
116 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
117 |
+
__pypackages__/
|
118 |
+
|
119 |
+
# Celery stuff
|
120 |
+
celerybeat-schedule
|
121 |
+
celerybeat.pid
|
122 |
+
|
123 |
+
# SageMath parsed files
|
124 |
+
*.sage.py
|
125 |
+
|
126 |
+
# Environments
|
127 |
+
.env
|
128 |
+
.venv
|
129 |
+
env/
|
130 |
+
venv/
|
131 |
+
ENV/
|
132 |
+
env.bak/
|
133 |
+
venv.bak/
|
134 |
+
|
135 |
+
# Spyder project settings
|
136 |
+
.spyderproject
|
137 |
+
.spyproject
|
138 |
+
|
139 |
+
# Rope project settings
|
140 |
+
.ropeproject
|
141 |
+
|
142 |
+
# mkdocs documentation
|
143 |
+
/site
|
144 |
+
|
145 |
+
# mypy
|
146 |
+
.mypy_cache/
|
147 |
+
.dmypy.json
|
148 |
+
dmypy.json
|
149 |
+
|
150 |
+
# Pyre type checker
|
151 |
+
.pyre/
|
152 |
+
|
153 |
+
# pytype static type analyzer
|
154 |
+
.pytype/
|
155 |
+
|
156 |
+
# Cython debug symbols
|
157 |
+
cython_debug/
|
158 |
+
|
159 |
+
# PyCharm
|
160 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
161 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
162 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
163 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
164 |
+
#.idea/
|
165 |
+
|
166 |
+
### Python Patch ###
|
167 |
+
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
168 |
+
poetry.toml
|
169 |
+
|
170 |
+
# ruff
|
171 |
+
.ruff_cache/
|
172 |
+
|
173 |
+
# LSP config files
|
174 |
+
pyrightconfig.json
|
175 |
+
|
176 |
+
# .env file
|
177 |
+
.env
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: π
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
short_description: The only leaderboard you will require for your RAG needs π
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.24.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
short_description: The only leaderboard you will require for your RAG needs π
|
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
from
|
|
|
|
|
|
|
4 |
|
5 |
HEADER = """<div style="text-align: center; margin-bottom: 20px;">
|
6 |
<h1>The Arabic RAG Leaderboard</h1>
|
@@ -13,68 +16,6 @@ This leaderboard presents the first comprehensive benchmark for Arabic RAG syste
|
|
13 |
For technical details, check our blog post <a href="https://huggingface.co/blog/Navid-AI/arabic-rag-leaderboard">here</a>.
|
14 |
"""
|
15 |
|
16 |
-
RETRIEVAL_ABOUT_SECTION = """
|
17 |
-
## About Retrieval Evaluation
|
18 |
-
|
19 |
-
The retrieval evaluation assesses a model's ability to find and retrieve relevant information from a large corpus of Arabic text. Models are evaluated on:
|
20 |
-
|
21 |
-
### Web Search Dataset Metrics
|
22 |
-
- **MRR (Mean Reciprocal Rank)**: Measures the ranking quality by focusing on the position of the first relevant result
|
23 |
-
- **nDCG (Normalized Discounted Cumulative Gain)**: Evaluates the ranking quality considering all relevant results
|
24 |
-
- **Recall@5**: Measures the proportion of relevant documents found in the top 5 results
|
25 |
-
- **Overall Score**: Combined score calculated as the average of MRR, nDCG, and Recall@5
|
26 |
-
|
27 |
-
### Model Requirements
|
28 |
-
- Must support Arabic text embeddings
|
29 |
-
- Should handle queries of at least 512 tokens
|
30 |
-
- Must work with `sentence-transformers` library
|
31 |
-
|
32 |
-
### Evaluation Process
|
33 |
-
1. Models process Arabic web search queries
|
34 |
-
2. Retrieved documents are evaluated using:
|
35 |
-
- MRR for first relevant result positioning
|
36 |
-
- nDCG for overall ranking quality
|
37 |
-
- Recall@5 for top results accuracy
|
38 |
-
3. Metrics are averaged to calculate the overall score
|
39 |
-
4. Models are ranked based on their overall performance
|
40 |
-
|
41 |
-
### How to Prepare Your Model
|
42 |
-
- Ensure your model is publicly available on HuggingFace Hub (We don't support private model evaluations yet)
|
43 |
-
- Model should output fixed-dimension embeddings for text
|
44 |
-
- Support batch processing for efficient evaluation (this is default if you use `sentence-transformers`)
|
45 |
-
"""
|
46 |
-
|
47 |
-
RERANKER_ABOUT_SECTION = """
|
48 |
-
## About Reranking Evaluation
|
49 |
-
|
50 |
-
The reranking evaluation assesses a model's ability to improve search quality by reordering initially retrieved results. Models are evaluated across multiple unseen Arabic datasets to ensure robust performance.
|
51 |
-
|
52 |
-
### Evaluation Metrics
|
53 |
-
- **MRR@10 (Mean Reciprocal Rank at 10)**: Measures the ranking quality focusing on the first relevant result in top-10
|
54 |
-
- **NDCG@10 (Normalized DCG at 10)**: Evaluates the ranking quality of all relevant results in top-10
|
55 |
-
- **MAP (Mean Average Precision)**: Measures the overall precision across all relevant documents
|
56 |
-
|
57 |
-
All metrics are averaged across multiple evaluation datasets to provide a comprehensive assessment of model performance.
|
58 |
-
|
59 |
-
### Model Requirements
|
60 |
-
- Must accept query-document pairs as input
|
61 |
-
- Should output relevance scores for reranking (has cross-attention or similar mechanism for query-document matching)
|
62 |
-
- Support for Arabic text processing
|
63 |
-
|
64 |
-
### Evaluation Process
|
65 |
-
1. Models are tested on multiple unseen Arabic datasets
|
66 |
-
2. For each dataset:
|
67 |
-
- Initial candidate documents are provided
|
68 |
-
- Model reranks the candidates
|
69 |
-
- MRR@10, NDCG@10, and MAP are calculated
|
70 |
-
3. Final scores are averaged across all datasets
|
71 |
-
4. Models are ranked based on overall performance
|
72 |
-
|
73 |
-
### How to Prepare Your Model
|
74 |
-
- Model should be public on HuggingFace Hub (private models are not supported yet)
|
75 |
-
- Make sure it works coherently with `sentence-transformers` library
|
76 |
-
"""
|
77 |
-
|
78 |
CITATION_BUTTON_LABEL = """
|
79 |
Copy the following snippet to cite these results
|
80 |
"""
|
@@ -89,162 +30,20 @@ CITATION_BUTTON_TEXT = """
|
|
89 |
}
|
90 |
"""
|
91 |
|
92 |
-
retrieval_df = None
|
93 |
-
reranking_df = None
|
94 |
-
|
95 |
-
def search_leaderboard(df, model_name, columns_to_show, threshold=95):
|
96 |
-
if not model_name.strip():
|
97 |
-
return df.loc[:, columns_to_show]
|
98 |
-
search_name = model_name.lower() # compute once for efficiency
|
99 |
-
def calculate_similarity(row):
|
100 |
-
return fuzz.partial_ratio(search_name, row["Model"].lower())
|
101 |
-
filtered_df = df.copy()
|
102 |
-
filtered_df["similarity"] = filtered_df.apply(calculate_similarity, axis=1)
|
103 |
-
filtered_df = filtered_df[filtered_df["similarity"] >= threshold].sort_values('similarity', ascending=False)
|
104 |
-
filtered_df = filtered_df.drop('similarity', axis=1).loc[:, columns_to_show]
|
105 |
-
return filtered_df
|
106 |
-
|
107 |
-
def retrieval_search_leaderboard(model_name, columns_to_show):
|
108 |
-
return search_leaderboard(retrieval_df, model_name, columns_to_show)
|
109 |
-
|
110 |
-
def reranking_search_leaderboard(model_name, columns_to_show):
|
111 |
-
return search_leaderboard(reranking_df, model_name, columns_to_show)
|
112 |
-
|
113 |
-
def update_retrieval_columns_to_show(columns_to_show):
|
114 |
-
global retrieval_df
|
115 |
-
dummy_df = retrieval_df.loc[:, [col for col in retrieval_df.columns if col in columns_to_show]]
|
116 |
-
columns_widths = []
|
117 |
-
for col in dummy_df.columns:
|
118 |
-
if col == "Rank":
|
119 |
-
columns_widths.append(80)
|
120 |
-
elif col == "Model":
|
121 |
-
columns_widths.append(400)
|
122 |
-
else:
|
123 |
-
columns_widths.append(150)
|
124 |
-
return gr.update(value=dummy_df, column_widths=columns_widths)
|
125 |
-
|
126 |
-
def update_reranker_columns_to_show(columns_to_show):
|
127 |
-
global reranking_df
|
128 |
-
dummy_df = reranking_df.loc[:, [col for col in reranking_df.columns if col in columns_to_show]]
|
129 |
-
columns_widths = []
|
130 |
-
for col in dummy_df.columns:
|
131 |
-
if col == "Rank":
|
132 |
-
columns_widths.append(80)
|
133 |
-
elif col == "Model":
|
134 |
-
columns_widths.append(400)
|
135 |
-
else:
|
136 |
-
columns_widths.append(150)
|
137 |
-
return gr.update(value=dummy_df, column_widths=columns_widths)
|
138 |
-
|
139 |
def main():
|
140 |
-
global retrieval_df, reranking_df
|
141 |
-
|
142 |
-
# Prepare retrieval dataframe
|
143 |
-
retrieval_df = load_retrieval_results(True, "Web Search Dataset (Overall Score)", ["Revision", "Precision", "Task"])
|
144 |
-
retrieval_df.insert(0, "Rank", range(1, 1 + len(retrieval_df)))
|
145 |
-
retrieval_df = retrieval_df[['Rank', 'Model', 'Web Search Dataset (Overall Score)', 'Model Size (MB)', 'Embedding Dimension', 'Max Tokens', 'Num Likes', 'Downloads Last Month', 'Web Search Dataset (MRR)', 'Web Search Dataset (nDCG@k=None)', 'Web Search Dataset (Recall@5)', 'License']]
|
146 |
-
retrieval_columns_to_show = ["Rank", "Model", "Web Search Dataset (Overall Score)", "Model Size (MB)", "Embedding Dimension", "Max Tokens", "Num Likes"]
|
147 |
-
retrieval_columns_widths = [80, 400, 150, 150, 150, 150, 150]
|
148 |
-
retrieval_cols = retrieval_df.columns.tolist() # cache columns
|
149 |
-
|
150 |
-
# Prepare reranking dataframe
|
151 |
-
reranking_df = load_reranking_results(True, sort_col="Overall Score", drop_cols=["Revision", "Precision", "Task"])
|
152 |
-
reranking_df.insert(0, "Rank", range(1, 1 + len(reranking_df)))
|
153 |
-
reranking_df.rename(columns={"nDCG": "nDCG@10", "MRR": "MRR@10"}, inplace=True)
|
154 |
-
reranking_columns_to_show = ["Rank", "Model", "Overall Score", "Model Parameters (in Millions)", "Embedding Dimensions", "Downloads Last Month", "MRR@10", "nDCG@10", "MAP"]
|
155 |
-
reranking_columns_widths = [80, 400, 150, 150, 150, 150, 150, 150, 150]
|
156 |
-
reranking_cols = reranking_df.columns.tolist() # cache columns
|
157 |
-
|
158 |
with gr.Blocks() as demo:
|
159 |
gr.HTML(HEADER)
|
160 |
|
161 |
with gr.Tabs():
|
162 |
with gr.Tab("π΅οΈββοΈ Retrieval"):
|
163 |
-
|
164 |
-
with gr.Tab("π Leaderboard"):
|
165 |
-
with gr.Row():
|
166 |
-
search_box_retrieval = gr.Textbox(
|
167 |
-
placeholder="Search for models...",
|
168 |
-
label="Search",
|
169 |
-
scale=5
|
170 |
-
)
|
171 |
-
retrieval_columns_to_show_input = gr.CheckboxGroup(
|
172 |
-
label="Columns to Show",
|
173 |
-
choices=retrieval_cols, # use cached list
|
174 |
-
value=retrieval_columns_to_show,
|
175 |
-
scale=4
|
176 |
-
)
|
177 |
-
|
178 |
-
retrieval_leaderboard = gr.Dataframe(
|
179 |
-
value=retrieval_df.loc[:, retrieval_columns_to_show],
|
180 |
-
datatype="markdown",
|
181 |
-
wrap=False,
|
182 |
-
show_fullscreen_button=True,
|
183 |
-
interactive=False,
|
184 |
-
column_widths=retrieval_columns_widths
|
185 |
-
)
|
186 |
-
|
187 |
-
# Submit the search box and the leaderboard
|
188 |
-
search_box_retrieval.input(
|
189 |
-
retrieval_search_leaderboard,
|
190 |
-
inputs=[search_box_retrieval, retrieval_columns_to_show_input],
|
191 |
-
outputs=retrieval_leaderboard
|
192 |
-
)
|
193 |
-
retrieval_columns_to_show_input.select(
|
194 |
-
update_retrieval_columns_to_show,
|
195 |
-
inputs=retrieval_columns_to_show_input,
|
196 |
-
outputs=retrieval_leaderboard
|
197 |
-
)
|
198 |
-
|
199 |
-
with gr.Tab("π΅οΈ Submit Retriever"):
|
200 |
-
submit_gradio_module("Retriever")
|
201 |
-
|
202 |
-
with gr.Tab("βΉοΈ About"):
|
203 |
-
gr.Markdown(RETRIEVAL_ABOUT_SECTION)
|
204 |
|
205 |
with gr.Tab("π Reranking"):
|
206 |
-
|
207 |
-
with gr.Tab("π Leaderboard"):
|
208 |
-
with gr.Row():
|
209 |
-
search_box_reranker = gr.Textbox(
|
210 |
-
placeholder="Search for models...",
|
211 |
-
label="Search",
|
212 |
-
scale=5
|
213 |
-
)
|
214 |
-
reranking_columns_to_show_input = gr.CheckboxGroup(
|
215 |
-
label="Columns to Show",
|
216 |
-
choices=reranking_cols, # use cached list
|
217 |
-
value=reranking_columns_to_show,
|
218 |
-
scale=4
|
219 |
-
)
|
220 |
-
|
221 |
-
reranker_leaderboard = gr.Dataframe(
|
222 |
-
value=reranking_df[reranking_columns_to_show],
|
223 |
-
datatype="markdown",
|
224 |
-
wrap=False,
|
225 |
-
show_fullscreen_button=True,
|
226 |
-
interactive=False,
|
227 |
-
column_widths=reranking_columns_widths
|
228 |
-
)
|
229 |
-
|
230 |
-
# Submit the search box and the leaderboard
|
231 |
-
search_box_reranker.input(
|
232 |
-
reranking_search_leaderboard,
|
233 |
-
inputs=[search_box_reranker, reranking_columns_to_show_input],
|
234 |
-
outputs=reranker_leaderboard
|
235 |
-
)
|
236 |
-
reranking_columns_to_show_input.select(
|
237 |
-
update_reranker_columns_to_show,
|
238 |
-
inputs=reranking_columns_to_show_input,
|
239 |
-
outputs=reranker_leaderboard
|
240 |
-
)
|
241 |
-
|
242 |
-
with gr.Tab("π΅οΈ Submit Reranker"):
|
243 |
-
submit_gradio_module("Reranker")
|
244 |
-
|
245 |
-
with gr.Tab("βΉοΈ About"):
|
246 |
-
gr.Markdown(RERANKER_ABOUT_SECTION)
|
247 |
|
|
|
|
|
|
|
248 |
with gr.Row():
|
249 |
with gr.Accordion("π Citation", open=False):
|
250 |
gr.Textbox(
|
|
|
1 |
import gradio as gr
|
2 |
+
from retrieval_leaderboard import create_retrieval_tab
|
3 |
+
from reranking_leaderboard import create_reranking_tab
|
4 |
+
from llm_in_context_leaderboard import create_llm_in_context_tab
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
load_dotenv()
|
7 |
|
8 |
HEADER = """<div style="text-align: center; margin-bottom: 20px;">
|
9 |
<h1>The Arabic RAG Leaderboard</h1>
|
|
|
16 |
For technical details, check our blog post <a href="https://huggingface.co/blog/Navid-AI/arabic-rag-leaderboard">here</a>.
|
17 |
"""
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
CITATION_BUTTON_LABEL = """
|
20 |
Copy the following snippet to cite these results
|
21 |
"""
|
|
|
30 |
}
|
31 |
"""
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
with gr.Blocks() as demo:
|
35 |
gr.HTML(HEADER)
|
36 |
|
37 |
with gr.Tabs():
|
38 |
with gr.Tab("π΅οΈββοΈ Retrieval"):
|
39 |
+
create_retrieval_tab()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
with gr.Tab("π Reranking"):
|
42 |
+
create_reranking_tab()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# with gr.Tab("π LLM in Context"):
|
45 |
+
# create_llm_in_context_tab()
|
46 |
+
|
47 |
with gr.Row():
|
48 |
with gr.Accordion("π Citation", open=False):
|
49 |
gr.Textbox(
|
leaderboard_tab.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from fuzzywuzzy import fuzz
|
4 |
+
from utils import submit_gradio_module
|
5 |
+
|
6 |
+
def search_leaderboard(df, model_name, columns_to_show, threshold=95):
|
7 |
+
"""
|
8 |
+
Search the leaderboard for models matching the search term using fuzzy matching.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
df: The dataframe containing all leaderboard data
|
12 |
+
model_name: The search term to find models
|
13 |
+
columns_to_show: List of columns to include in the result
|
14 |
+
threshold: Minimum similarity threshold (default: 95)
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
Filtered dataframe with only matching models and selected columns
|
18 |
+
"""
|
19 |
+
if not model_name.strip():
|
20 |
+
return df.loc[:, columns_to_show]
|
21 |
+
search_name = model_name.lower() # compute once for efficiency
|
22 |
+
def calculate_similarity(row):
|
23 |
+
return fuzz.partial_ratio(search_name, row["Model"].lower())
|
24 |
+
filtered_df = df.copy()
|
25 |
+
filtered_df["similarity"] = filtered_df.apply(calculate_similarity, axis=1)
|
26 |
+
filtered_df = filtered_df[filtered_df["similarity"] >= threshold].sort_values('similarity', ascending=False)
|
27 |
+
filtered_df = filtered_df.drop('similarity', axis=1).loc[:, columns_to_show]
|
28 |
+
return filtered_df
|
29 |
+
|
30 |
+
def update_columns_to_show(df, columns_to_show):
|
31 |
+
"""
|
32 |
+
Update the displayed columns in the dataframe.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
df: The dataframe to update
|
36 |
+
columns_to_show: List of columns to include
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
gradio.update object with the updated dataframe
|
40 |
+
"""
|
41 |
+
dummy_df = df.loc[:, [col for col in df.columns if col in columns_to_show]]
|
42 |
+
columns_widths = []
|
43 |
+
for col in dummy_df.columns:
|
44 |
+
if col == "Rank":
|
45 |
+
columns_widths.append(80)
|
46 |
+
elif col == "Model":
|
47 |
+
columns_widths.append(400)
|
48 |
+
else:
|
49 |
+
columns_widths.append(150)
|
50 |
+
return gr.update(value=dummy_df, column_widths=columns_widths)
|
51 |
+
|
52 |
+
def create_leaderboard_tab(df, initial_columns_to_show, search_function, update_function, about_section, task_type):
|
53 |
+
"""
|
54 |
+
Create a complete leaderboard tab with search, column selection, and data display.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
df: The dataframe containing the leaderboard data
|
58 |
+
initial_columns_to_show: Initial list of columns to display
|
59 |
+
search_function: Function to handle searching
|
60 |
+
update_function: Function to handle column updates
|
61 |
+
about_section: Markdown text for the About tab
|
62 |
+
task_type: Type of the task ("Retriever" or "Reranker")
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
A gradio Tabs component with the complete leaderboard interface
|
66 |
+
"""
|
67 |
+
columns_widths = [80 if col == "Rank" else 400 if col == "Model" else 150 for col in initial_columns_to_show]
|
68 |
+
|
69 |
+
with gr.Tabs() as tabs:
|
70 |
+
with gr.Tab("π Leaderboard"):
|
71 |
+
with gr.Column():
|
72 |
+
with gr.Row(equal_height=True):
|
73 |
+
search_box = gr.Textbox(
|
74 |
+
placeholder="Search for models...",
|
75 |
+
label="Search (You can also press Enter to search)",
|
76 |
+
scale=5
|
77 |
+
)
|
78 |
+
search_button = gr.Button(
|
79 |
+
value="Search",
|
80 |
+
variant="primary",
|
81 |
+
scale=1
|
82 |
+
)
|
83 |
+
columns_to_show_input = gr.CheckboxGroup(
|
84 |
+
label="Columns to Show",
|
85 |
+
choices=df.columns.tolist(),
|
86 |
+
value=initial_columns_to_show,
|
87 |
+
scale=4
|
88 |
+
)
|
89 |
+
|
90 |
+
leaderboard = gr.Dataframe(
|
91 |
+
value=df.loc[:, initial_columns_to_show],
|
92 |
+
datatype="markdown",
|
93 |
+
wrap=True,
|
94 |
+
show_fullscreen_button=True,
|
95 |
+
interactive=False,
|
96 |
+
column_widths=columns_widths
|
97 |
+
)
|
98 |
+
|
99 |
+
# Connect events
|
100 |
+
search_box.submit(
|
101 |
+
search_function,
|
102 |
+
inputs=[search_box, columns_to_show_input],
|
103 |
+
outputs=leaderboard
|
104 |
+
)
|
105 |
+
columns_to_show_input.select(
|
106 |
+
update_function,
|
107 |
+
inputs=columns_to_show_input,
|
108 |
+
outputs=leaderboard
|
109 |
+
)
|
110 |
+
search_button.click(
|
111 |
+
search_function,
|
112 |
+
inputs=[search_box, columns_to_show_input],
|
113 |
+
outputs=leaderboard
|
114 |
+
)
|
115 |
+
|
116 |
+
with gr.Tab("π΅οΈ Submit"):
|
117 |
+
submit_gradio_module(task_type)
|
118 |
+
|
119 |
+
with gr.Tab("βΉοΈ About"):
|
120 |
+
gr.Markdown(about_section)
|
121 |
+
|
122 |
+
return tabs
|
llm_in_context_leaderboard.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from utils import load_json_results
|
3 |
+
import gradio as gr
|
4 |
+
from leaderboard_tab import search_leaderboard, update_columns_to_show, create_leaderboard_tab
|
5 |
+
|
6 |
+
# Constants
|
7 |
+
LLM_IN_CONTEXT_ABOUT_SECTION = """"""
|
8 |
+
|
9 |
+
# Global variables
|
10 |
+
llm_in_context_df = None
|
11 |
+
|
12 |
+
def load_reranking_leaderboard():
|
13 |
+
"""Load and prepare the reranking leaderboard data"""
|
14 |
+
global llm_in_context_df
|
15 |
+
|
16 |
+
dataframe_path = Path(__file__).parent / "results" / "llm_in_context_results.json"
|
17 |
+
|
18 |
+
# Prepare dataframe
|
19 |
+
llm_in_context_df = load_json_results(
|
20 |
+
dataframe_path,
|
21 |
+
prepare_for_display=True,
|
22 |
+
sort_col="Overall Score",
|
23 |
+
drop_cols=["Revision", "Precision", "Task"]
|
24 |
+
)
|
25 |
+
llm_in_context_df.insert(0, "Rank", range(1, 1 + len(llm_in_context_df)))
|
26 |
+
llm_in_context_df.rename(columns={"nDCG": "nDCG@10", "MRR": "MRR@10"}, inplace=True)
|
27 |
+
|
28 |
+
return llm_in_context_df
|
29 |
+
|
30 |
+
def reranking_search_leaderboard(model_name, columns_to_show):
|
31 |
+
"""Search function for reranking leaderboard"""
|
32 |
+
return search_leaderboard(llm_in_context_df, model_name, columns_to_show)
|
33 |
+
|
34 |
+
def update_reranker_columns_to_show(columns_to_show):
|
35 |
+
"""Update displayed columns for reranking leaderboard"""
|
36 |
+
return update_columns_to_show(llm_in_context_df, columns_to_show)
|
37 |
+
|
38 |
+
def create_llm_in_context_tab():
|
39 |
+
"""Create the complete reranking leaderboard tab"""
|
40 |
+
global llm_in_context_df
|
41 |
+
|
42 |
+
# Load data if not already loaded
|
43 |
+
if (llm_in_context_df is None):
|
44 |
+
llm_in_context_df = load_reranking_leaderboard()
|
45 |
+
|
46 |
+
# Define default columns to show
|
47 |
+
default_columns = ["Rank", "Model", "Overall Score", "Model Parameters (in Millions)",
|
48 |
+
"Embedding Dimensions", "Downloads Last Month", "MRR@10", "nDCG@10", "MAP"]
|
49 |
+
|
50 |
+
columns_widths = [80 if col == "Rank" else 400 if col == "Model" else 150 for col in initial_columns_to_show]
|
51 |
+
|
52 |
+
with gr.Tabs() as tabs:
|
53 |
+
with gr.Tab("π Context Dependant Leaderboard"):
|
54 |
+
with gr.Column():
|
55 |
+
with gr.Row(equal_height=True):
|
56 |
+
search_box = gr.Textbox(
|
57 |
+
placeholder="Search for models...",
|
58 |
+
label="Search (You can also press Enter to search)",
|
59 |
+
scale=5
|
60 |
+
)
|
61 |
+
search_button = gr.Button(
|
62 |
+
value="Search",
|
63 |
+
variant="primary",
|
64 |
+
scale=1
|
65 |
+
)
|
66 |
+
columns_to_show_input = gr.CheckboxGroup(
|
67 |
+
label="Columns to Show",
|
68 |
+
choices=llm_in_context_df.columns.tolist(),
|
69 |
+
value=initial_columns_to_show,
|
70 |
+
scale=4
|
71 |
+
)
|
72 |
+
|
73 |
+
leaderboard = gr.Dataframe(
|
74 |
+
value=llm_in_context_df.loc[:, initial_columns_to_show],
|
75 |
+
datatype="markdown",
|
76 |
+
wrap=False,
|
77 |
+
show_fullscreen_button=True,
|
78 |
+
interactive=False,
|
79 |
+
column_widths=columns_widths
|
80 |
+
)
|
81 |
+
|
82 |
+
# Connect events
|
83 |
+
search_box.submit(
|
84 |
+
search_function,
|
85 |
+
inputs=[search_box, columns_to_show_input],
|
86 |
+
outputs=leaderboard
|
87 |
+
)
|
88 |
+
columns_to_show_input.select(
|
89 |
+
update_function,
|
90 |
+
inputs=columns_to_show_input,
|
91 |
+
outputs=leaderboard
|
92 |
+
)
|
93 |
+
search_button.click(
|
94 |
+
search_function,
|
95 |
+
inputs=[search_box, columns_to_show_input],
|
96 |
+
outputs=leaderboard
|
97 |
+
)
|
98 |
+
|
99 |
+
with gr.Tab("π Context About Leaderboard"):
|
100 |
+
with gr.Column():
|
101 |
+
with gr.Row(equal_height=True):
|
102 |
+
search_box = gr.Textbox(
|
103 |
+
placeholder="Search for models...",
|
104 |
+
label="Search (You can also press Enter to search)",
|
105 |
+
scale=5
|
106 |
+
)
|
107 |
+
search_button = gr.Button(
|
108 |
+
value="Search",
|
109 |
+
variant="primary",
|
110 |
+
scale=1
|
111 |
+
)
|
112 |
+
columns_to_show_input = gr.CheckboxGroup(
|
113 |
+
label="Columns to Show",
|
114 |
+
choices=llm_in_context_df.columns.tolist(),
|
115 |
+
value=initial_columns_to_show,
|
116 |
+
scale=4
|
117 |
+
)
|
118 |
+
|
119 |
+
leaderboard = gr.Dataframe(
|
120 |
+
value=llm_in_context_df.loc[:, initial_columns_to_show],
|
121 |
+
datatype="markdown",
|
122 |
+
wrap=False,
|
123 |
+
show_fullscreen_button=True,
|
124 |
+
interactive=False,
|
125 |
+
column_widths=columns_widths
|
126 |
+
)
|
127 |
+
|
128 |
+
# Connect events
|
129 |
+
search_box.submit(
|
130 |
+
search_function,
|
131 |
+
inputs=[search_box, columns_to_show_input],
|
132 |
+
outputs=leaderboard
|
133 |
+
)
|
134 |
+
columns_to_show_input.select(
|
135 |
+
update_function,
|
136 |
+
inputs=columns_to_show_input,
|
137 |
+
outputs=leaderboard
|
138 |
+
)
|
139 |
+
search_button.click(
|
140 |
+
search_function,
|
141 |
+
inputs=[search_box, columns_to_show_input],
|
142 |
+
outputs=leaderboard
|
143 |
+
)
|
144 |
+
|
145 |
+
with gr.Tab("π΅οΈ Submit"):
|
146 |
+
submit_gradio_module(task_type)
|
147 |
+
|
148 |
+
with gr.Tab("βΉοΈ About"):
|
149 |
+
gr.Markdown(about_section)
|
150 |
+
|
151 |
+
return tabs
|
152 |
+
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
fuzzywuzzy
|
2 |
-
Levenshtein
|
|
|
|
1 |
fuzzywuzzy
|
2 |
+
Levenshtein
|
3 |
+
python-dotenv
|
reranking_leaderboard.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from utils import load_json_results
|
3 |
+
from leaderboard_tab import search_leaderboard, update_columns_to_show, create_leaderboard_tab
|
4 |
+
|
5 |
+
# Constants
|
6 |
+
RERANKER_ABOUT_SECTION = """
|
7 |
+
## About Reranking Evaluation
|
8 |
+
|
9 |
+
The reranking evaluation assesses a model's ability to improve search quality by reordering initially retrieved results. Models are evaluated across multiple unseen Arabic datasets to ensure robust performance.
|
10 |
+
|
11 |
+
### Evaluation Metrics
|
12 |
+
- **MRR@10 (Mean Reciprocal Rank at 10)**: Measures the ranking quality focusing on the first relevant result in top-10
|
13 |
+
- **NDCG@10 (Normalized DCG at 10)**: Evaluates the ranking quality of all relevant results in top-10
|
14 |
+
- **MAP (Mean Average Precision)**: Measures the overall precision across all relevant documents
|
15 |
+
|
16 |
+
All metrics are averaged across multiple evaluation datasets to provide a comprehensive assessment of model performance.
|
17 |
+
|
18 |
+
### Model Requirements
|
19 |
+
- Must accept query-document pairs as input
|
20 |
+
- Should output relevance scores for reranking (has cross-attention or similar mechanism for query-document matching)
|
21 |
+
- Support for Arabic text processing
|
22 |
+
|
23 |
+
### Evaluation Process
|
24 |
+
1. Models are tested on multiple unseen Arabic datasets
|
25 |
+
2. For each dataset:
|
26 |
+
- Initial candidate documents are provided
|
27 |
+
- Model reranks the candidates
|
28 |
+
- MRR@10, NDCG@10, and MAP are calculated
|
29 |
+
3. Final scores are averaged across all datasets
|
30 |
+
4. Models are ranked based on overall performance
|
31 |
+
|
32 |
+
### How to Prepare Your Model
|
33 |
+
- Model should be public on HuggingFace Hub (private models are not supported yet)
|
34 |
+
- Make sure it works coherently with `sentence-transformers` library
|
35 |
+
"""
|
36 |
+
|
37 |
+
# Global variables
|
38 |
+
reranking_df = None
|
39 |
+
|
40 |
+
def load_reranking_results(prepare_for_display=False, sort_col=None, drop_cols=None):
|
41 |
+
dataframe_path = Path(__file__).parent / "results" / "reranking_results.json"
|
42 |
+
return load_json_results(
|
43 |
+
dataframe_path,
|
44 |
+
prepare_for_display=prepare_for_display,
|
45 |
+
sort_col=sort_col,
|
46 |
+
drop_cols=drop_cols
|
47 |
+
)
|
48 |
+
|
49 |
+
def load_reranking_leaderboard():
|
50 |
+
"""Load and prepare the reranking leaderboard data"""
|
51 |
+
global reranking_df
|
52 |
+
|
53 |
+
# Prepare reranking dataframe
|
54 |
+
reranking_df = load_reranking_results(True, sort_col="Average Score", drop_cols=["Revision", "Precision", "Task"])
|
55 |
+
reranking_df.insert(0, "Rank", range(1, 1 + len(reranking_df)))
|
56 |
+
|
57 |
+
return reranking_df
|
58 |
+
|
59 |
+
def reranking_search_leaderboard(model_name, columns_to_show):
|
60 |
+
"""Search function for reranking leaderboard"""
|
61 |
+
return search_leaderboard(reranking_df, model_name, columns_to_show)
|
62 |
+
|
63 |
+
def update_reranker_columns_to_show(columns_to_show):
|
64 |
+
"""Update displayed columns for reranking leaderboard"""
|
65 |
+
return update_columns_to_show(reranking_df, columns_to_show)
|
66 |
+
|
67 |
+
def create_reranking_tab():
|
68 |
+
"""Create the complete reranking leaderboard tab"""
|
69 |
+
global reranking_df
|
70 |
+
|
71 |
+
# Load data if not already loaded
|
72 |
+
if (reranking_df is None):
|
73 |
+
reranking_df = load_reranking_leaderboard()
|
74 |
+
|
75 |
+
# Define default columns to show
|
76 |
+
default_columns = ["Rank", "Model", "Average Score", "Model Size (MB)", "Context Length",
|
77 |
+
"Embedding Dimension", "Namaa Global Knowledge", "Navid General Knowledge"]
|
78 |
+
|
79 |
+
# Create and return the tab
|
80 |
+
return create_leaderboard_tab(
|
81 |
+
df=reranking_df,
|
82 |
+
initial_columns_to_show=default_columns,
|
83 |
+
search_function=reranking_search_leaderboard,
|
84 |
+
update_function=update_reranker_columns_to_show,
|
85 |
+
about_section=RERANKER_ABOUT_SECTION,
|
86 |
+
task_type="Reranker"
|
87 |
+
)
|
results/reranking_results.json
CHANGED
@@ -1,242 +1,506 @@
|
|
1 |
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
{
|
3 |
"Model": "BAAI/bge-reranker-v2-m3",
|
4 |
-
"
|
5 |
-
"
|
6 |
-
"Model Parameters (in Millions)": 568.0,
|
7 |
-
"Downloads Last Month": 966662,
|
8 |
-
"MRR": 79.41,
|
9 |
-
"nDCG": 95.1,
|
10 |
-
"MAP": 81.69,
|
11 |
-
"Num Likes": 491,
|
12 |
-
"License": "apache-2.0",
|
13 |
-
"Precision": "F32",
|
14 |
"Task": "Reranker",
|
15 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
},
|
17 |
{
|
18 |
-
"Model": "
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"Model Parameters (in Millions)": 568.0,
|
22 |
-
"Downloads Last Month": 121,
|
23 |
-
"MRR": 76.48,
|
24 |
-
"nDCG": 93.14,
|
25 |
-
"MAP": 82.67,
|
26 |
-
"Num Likes": 4,
|
27 |
-
"License": "apache-2.0",
|
28 |
-
"Precision": "F32",
|
29 |
"Task": "Reranker",
|
30 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
},
|
32 |
{
|
33 |
"Model": "NAMAA-Space/GATE-Reranker-V1",
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"
|
38 |
-
"
|
39 |
-
"
|
40 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
"Num Likes": 7,
|
42 |
-
"License": "apache-2.0"
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
"Task": "Reranker",
|
45 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
},
|
47 |
{
|
48 |
-
"Model": "
|
49 |
-
"
|
50 |
-
"
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
"Task": "Reranker",
|
60 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
},
|
62 |
{
|
63 |
"Model": "Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet",
|
64 |
-
"
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"
|
68 |
-
"
|
69 |
-
"
|
70 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
"Num Likes": 4,
|
72 |
-
"License": "apache-2.0"
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
"Task": "Reranker",
|
75 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
},
|
77 |
{
|
78 |
-
"Model": "
|
79 |
-
"
|
80 |
-
"
|
81 |
-
"Model Parameters (in Millions)": 136.0,
|
82 |
-
"Downloads Last Month": 71050,
|
83 |
-
"MRR": 40.16,
|
84 |
-
"nDCG": 71.14,
|
85 |
-
"MAP": 58.77,
|
86 |
-
"Num Likes": 27,
|
87 |
-
"License": "N/A",
|
88 |
-
"Precision": "F32",
|
89 |
"Task": "Reranker",
|
90 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
},
|
92 |
{
|
93 |
-
"Model": "
|
94 |
-
"
|
95 |
-
"
|
96 |
-
"Model Parameters (in Millions)": 560.0,
|
97 |
-
"Downloads Last Month": 23830,
|
98 |
-
"MRR": 32.59,
|
99 |
-
"nDCG": 60.18,
|
100 |
-
"MAP": 71.41,
|
101 |
-
"Num Likes": 47,
|
102 |
-
"License": "mit",
|
103 |
-
"Precision": "F32",
|
104 |
"Task": "Reranker",
|
105 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
},
|
107 |
{
|
108 |
-
"Model": "
|
109 |
-
"
|
110 |
-
"
|
111 |
-
"Model Parameters (in Millions)": 135.0,
|
112 |
-
"Downloads Last Month": 957,
|
113 |
-
"MRR": 35.6,
|
114 |
-
"nDCG": 63.25,
|
115 |
-
"MAP": 63.64,
|
116 |
-
"Num Likes": 9,
|
117 |
-
"License": "apache-2.0",
|
118 |
-
"Precision": "F32",
|
119 |
"Task": "Reranker",
|
120 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
},
|
122 |
{
|
123 |
-
"Model": "
|
124 |
-
"
|
125 |
-
"
|
126 |
-
"Model Parameters (in Millions)": 471.0,
|
127 |
-
"Downloads Last Month": 745051,
|
128 |
-
"MRR": 32.9,
|
129 |
-
"nDCG": 67.82,
|
130 |
-
"MAP": 60.02,
|
131 |
-
"Num Likes": 242,
|
132 |
-
"License": "apache-2.0",
|
133 |
-
"Precision": "F32",
|
134 |
"Task": "Reranker",
|
135 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
},
|
137 |
{
|
138 |
-
"Model": "
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"Model Parameters (in Millions)": 560.0,
|
142 |
-
"Downloads Last Month": 391080,
|
143 |
-
"MRR": 48.35,
|
144 |
-
"nDCG": 56.06,
|
145 |
-
"MAP": 55.78,
|
146 |
-
"Num Likes": 288,
|
147 |
-
"License": "mit",
|
148 |
-
"Precision": "F16",
|
149 |
"Task": "Reranker",
|
150 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
},
|
152 |
{
|
153 |
-
"Model": "
|
154 |
-
"
|
155 |
-
"
|
156 |
-
"Model Parameters (in Millions)": 135.0,
|
157 |
-
"Downloads Last Month": 503,
|
158 |
-
"MRR": 40.58,
|
159 |
-
"nDCG": 54.7,
|
160 |
-
"MAP": 61.2,
|
161 |
-
"Num Likes": 2,
|
162 |
-
"License": "apache-2.0",
|
163 |
-
"Precision": "F32",
|
164 |
"Task": "Reranker",
|
165 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
},
|
167 |
{
|
168 |
-
"Model": "
|
169 |
-
"
|
170 |
-
"
|
171 |
-
"Model Parameters (in Millions)": 568.0,
|
172 |
-
"Downloads Last Month": 86764,
|
173 |
-
"MRR": 32.16,
|
174 |
-
"nDCG": 58.63,
|
175 |
-
"MAP": 64.05,
|
176 |
-
"Num Likes": 111,
|
177 |
-
"License": "apache-2.0",
|
178 |
-
"Precision": "F32",
|
179 |
"Task": "Reranker",
|
180 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
},
|
182 |
{
|
183 |
"Model": "aubmindlab/bert-large-arabertv2",
|
184 |
-
"
|
185 |
-
"
|
186 |
-
"
|
187 |
-
"
|
188 |
-
"
|
189 |
-
"
|
190 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
"Num Likes": 11,
|
192 |
-
"License": "N/A"
|
193 |
-
|
|
|
|
|
|
|
|
|
194 |
"Task": "Reranker",
|
195 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
},
|
197 |
{
|
198 |
-
"Model": "
|
199 |
-
"
|
200 |
-
"
|
201 |
-
"
|
202 |
-
"
|
203 |
-
"
|
204 |
-
"
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"
|
208 |
-
"
|
209 |
-
"
|
210 |
-
"
|
211 |
-
|
212 |
-
|
213 |
-
"
|
214 |
-
"
|
215 |
-
"
|
216 |
-
"
|
217 |
-
"Downloads Last Month": 1523322,
|
218 |
-
"MRR": 32.03,
|
219 |
-
"nDCG": 60.41,
|
220 |
-
"MAP": 55.87,
|
221 |
-
"Num Likes": 726,
|
222 |
-
"License": "cc-by-nc-4.0",
|
223 |
-
"Precision": "BF16",
|
224 |
-
"Task": "Reranker",
|
225 |
-
"Revision": "main"
|
226 |
},
|
227 |
{
|
228 |
-
"Model": "
|
229 |
-
"
|
230 |
-
"
|
231 |
-
"
|
232 |
-
"
|
233 |
-
"
|
234 |
-
"
|
235 |
-
"
|
236 |
-
"
|
237 |
-
"
|
238 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
"Task": "Reranker",
|
240 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
}
|
242 |
]
|
|
|
1 |
[
|
2 |
+
{
|
3 |
+
"Model": "Alibaba-NLP/gte-multilingual-reranker-base",
|
4 |
+
"Revision": "main",
|
5 |
+
"Precision": "f16",
|
6 |
+
"Task": "Reranker",
|
7 |
+
"Average Score": 85.03,
|
8 |
+
"Context Length": 8192,
|
9 |
+
"Embedding Dimension": 768,
|
10 |
+
"Model Size (MB)": 582.44,
|
11 |
+
"Number of Parameters (Billions)": 0.305,
|
12 |
+
"Namaa Global Knowledge": 76.76,
|
13 |
+
"Namaa Tourism": 77.1,
|
14 |
+
"Namaa Media": 78.88,
|
15 |
+
"Namaa Legal": 85.87,
|
16 |
+
"Navid General Knowledge": 86.05,
|
17 |
+
"Navid Web Search": 99.36,
|
18 |
+
"Navid Islamic Studies": 91.18,
|
19 |
+
"Downloads Last Month": 215347,
|
20 |
+
"Num Likes": 114,
|
21 |
+
"License": "apache-2.0"
|
22 |
+
},
|
23 |
{
|
24 |
"Model": "BAAI/bge-reranker-v2-m3",
|
25 |
+
"Revision": "main",
|
26 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
"Task": "Reranker",
|
28 |
+
"Average Score": 87.44,
|
29 |
+
"Context Length": 8192,
|
30 |
+
"Embedding Dimension": 1024,
|
31 |
+
"Model Size (MB)": 2165.81,
|
32 |
+
"Number of Parameters (Billions)": 0.568,
|
33 |
+
"Namaa Global Knowledge": 81.27,
|
34 |
+
"Namaa Tourism": 80.96,
|
35 |
+
"Namaa Media": 81.33,
|
36 |
+
"Namaa Legal": 88.58,
|
37 |
+
"Navid General Knowledge": 87.05,
|
38 |
+
"Navid Web Search": 99.3,
|
39 |
+
"Navid Islamic Studies": 93.59,
|
40 |
+
"Downloads Last Month": 1480691,
|
41 |
+
"Num Likes": 597,
|
42 |
+
"License": "apache-2.0"
|
43 |
},
|
44 |
{
|
45 |
+
"Model": "Lajavaness/bilingual-embedding-large",
|
46 |
+
"Revision": "main",
|
47 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
"Task": "Reranker",
|
49 |
+
"Average Score": 47.37,
|
50 |
+
"Context Length": 512,
|
51 |
+
"Embedding Dimension": 1024,
|
52 |
+
"Model Size (MB)": 2135.81,
|
53 |
+
"Number of Parameters (Billions)": 0.56,
|
54 |
+
"Namaa Global Knowledge": 46.48,
|
55 |
+
"Namaa Tourism": 46.61,
|
56 |
+
"Namaa Media": 46.01,
|
57 |
+
"Namaa Legal": 49.64,
|
58 |
+
"Navid General Knowledge": 47.87,
|
59 |
+
"Navid Web Search": 48.37,
|
60 |
+
"Navid Islamic Studies": 46.6,
|
61 |
+
"Downloads Last Month": 24311,
|
62 |
+
"Num Likes": 21,
|
63 |
+
"License": "apache-2.0"
|
64 |
},
|
65 |
{
|
66 |
"Model": "NAMAA-Space/GATE-Reranker-V1",
|
67 |
+
"Revision": "main",
|
68 |
+
"Precision": "f32",
|
69 |
+
"Task": "Reranker",
|
70 |
+
"Average Score": 83.96,
|
71 |
+
"Context Length": 512,
|
72 |
+
"Embedding Dimension": 768,
|
73 |
+
"Model Size (MB)": 515.72,
|
74 |
+
"Number of Parameters (Billions)": 0.135,
|
75 |
+
"Namaa Global Knowledge": 77.02,
|
76 |
+
"Namaa Tourism": 79.6,
|
77 |
+
"Namaa Media": 77.22,
|
78 |
+
"Namaa Legal": 84.41,
|
79 |
+
"Navid General Knowledge": 77.61,
|
80 |
+
"Navid Web Search": 95.71,
|
81 |
+
"Navid Islamic Studies": 96.14,
|
82 |
+
"Downloads Last Month": 1274,
|
83 |
"Num Likes": 7,
|
84 |
+
"License": "apache-2.0"
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"Model": "NAMAA-Space/Namaa-ARA-Reranker-V1",
|
88 |
+
"Revision": "main",
|
89 |
+
"Precision": "f32",
|
90 |
"Task": "Reranker",
|
91 |
+
"Average Score": 85.82,
|
92 |
+
"Context Length": 8192,
|
93 |
+
"Embedding Dimension": 1024,
|
94 |
+
"Model Size (MB)": 2165.81,
|
95 |
+
"Number of Parameters (Billions)": 0.568,
|
96 |
+
"Namaa Global Knowledge": 80.18,
|
97 |
+
"Namaa Tourism": 77.7,
|
98 |
+
"Namaa Media": 79.07,
|
99 |
+
"Namaa Legal": 87.62,
|
100 |
+
"Navid General Knowledge": 85.19,
|
101 |
+
"Navid Web Search": 98.81,
|
102 |
+
"Navid Islamic Studies": 92.19,
|
103 |
+
"Downloads Last Month": 41,
|
104 |
+
"Num Likes": 4,
|
105 |
+
"License": "apache-2.0"
|
106 |
},
|
107 |
{
|
108 |
+
"Model": "OmarAlsaabi/e5-base-mlqa-finetuned-arabic-for-rag",
|
109 |
+
"Revision": "main",
|
110 |
+
"Precision": "f16",
|
111 |
+
"Task": "Reranker",
|
112 |
+
"Average Score": 49.99,
|
113 |
+
"Context Length": 512,
|
114 |
+
"Embedding Dimension": 768,
|
115 |
+
"Model Size (MB)": 530.33,
|
116 |
+
"Number of Parameters (Billions)": 0.278,
|
117 |
+
"Namaa Global Knowledge": 48.65,
|
118 |
+
"Namaa Tourism": 47.23,
|
119 |
+
"Namaa Media": 51.33,
|
120 |
+
"Namaa Legal": 45.23,
|
121 |
+
"Navid General Knowledge": 52.75,
|
122 |
+
"Navid Web Search": 52.65,
|
123 |
+
"Navid Islamic Studies": 52.11,
|
124 |
+
"Downloads Last Month": 79,
|
125 |
+
"Num Likes": 5,
|
126 |
+
"License": "N/A"
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"Model": "OmarAlsaabi/e5-base-mlqa-finetuned-arabic-for-rag",
|
130 |
+
"Revision": "main",
|
131 |
+
"Precision": "f32",
|
132 |
"Task": "Reranker",
|
133 |
+
"Average Score": 51.83,
|
134 |
+
"Context Length": 512,
|
135 |
+
"Embedding Dimension": 768,
|
136 |
+
"Model Size (MB)": 1060.65,
|
137 |
+
"Number of Parameters (Billions)": 0.278,
|
138 |
+
"Namaa Global Knowledge": 50.2,
|
139 |
+
"Namaa Tourism": 53.47,
|
140 |
+
"Namaa Media": 51.93,
|
141 |
+
"Namaa Legal": 51.72,
|
142 |
+
"Navid General Knowledge": 55.01,
|
143 |
+
"Navid Web Search": 47.75,
|
144 |
+
"Navid Islamic Studies": 52.7,
|
145 |
+
"Downloads Last Month": 79,
|
146 |
+
"Num Likes": 5,
|
147 |
+
"License": "N/A"
|
148 |
},
|
149 |
{
|
150 |
"Model": "Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet",
|
151 |
+
"Revision": "main",
|
152 |
+
"Precision": "f32",
|
153 |
+
"Task": "Reranker",
|
154 |
+
"Average Score": 47.93,
|
155 |
+
"Context Length": 128,
|
156 |
+
"Embedding Dimension": 384,
|
157 |
+
"Model Size (MB)": 448.81,
|
158 |
+
"Number of Parameters (Billions)": 0.118,
|
159 |
+
"Namaa Global Knowledge": 50.18,
|
160 |
+
"Namaa Tourism": 49.26,
|
161 |
+
"Namaa Media": 48.13,
|
162 |
+
"Namaa Legal": 45.68,
|
163 |
+
"Navid General Knowledge": 43.49,
|
164 |
+
"Navid Web Search": 48.87,
|
165 |
+
"Navid Islamic Studies": 49.87,
|
166 |
+
"Downloads Last Month": 127,
|
167 |
"Num Likes": 4,
|
168 |
+
"License": "apache-2.0"
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"Model": "Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2",
|
172 |
+
"Revision": "main",
|
173 |
+
"Precision": "f32",
|
174 |
"Task": "Reranker",
|
175 |
+
"Average Score": 49.33,
|
176 |
+
"Context Length": 512,
|
177 |
+
"Embedding Dimension": 768,
|
178 |
+
"Model Size (MB)": 515.72,
|
179 |
+
"Number of Parameters (Billions)": 0.135,
|
180 |
+
"Namaa Global Knowledge": 50.03,
|
181 |
+
"Namaa Tourism": 50.52,
|
182 |
+
"Namaa Media": 48.73,
|
183 |
+
"Namaa Legal": 50.86,
|
184 |
+
"Navid General Knowledge": 49.1,
|
185 |
+
"Navid Web Search": 49.56,
|
186 |
+
"Navid Islamic Studies": 46.49,
|
187 |
+
"Downloads Last Month": 8143,
|
188 |
+
"Num Likes": 10,
|
189 |
+
"License": "apache-2.0"
|
190 |
},
|
191 |
{
|
192 |
+
"Model": "Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka",
|
193 |
+
"Revision": "main",
|
194 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
"Task": "Reranker",
|
196 |
+
"Average Score": 47.86,
|
197 |
+
"Context Length": 128,
|
198 |
+
"Embedding Dimension": 768,
|
199 |
+
"Model Size (MB)": 1060.65,
|
200 |
+
"Number of Parameters (Billions)": 0.278,
|
201 |
+
"Namaa Global Knowledge": 47.51,
|
202 |
+
"Namaa Tourism": 48.59,
|
203 |
+
"Namaa Media": 50.78,
|
204 |
+
"Namaa Legal": 46.82,
|
205 |
+
"Navid General Knowledge": 41.96,
|
206 |
+
"Navid Web Search": 51.73,
|
207 |
+
"Navid Islamic Studies": 47.65,
|
208 |
+
"Downloads Last Month": 291,
|
209 |
+
"Num Likes": 2,
|
210 |
+
"License": "apache-2.0"
|
211 |
},
|
212 |
{
|
213 |
+
"Model": "Omartificial-Intelligence-Space/Arabic-labse-Matryoshka",
|
214 |
+
"Revision": "main",
|
215 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
"Task": "Reranker",
|
217 |
+
"Average Score": 49.74,
|
218 |
+
"Context Length": 256,
|
219 |
+
"Embedding Dimension": 768,
|
220 |
+
"Model Size (MB)": 1798.7,
|
221 |
+
"Number of Parameters (Billions)": 0.472,
|
222 |
+
"Namaa Global Knowledge": 48.34,
|
223 |
+
"Namaa Tourism": 48.06,
|
224 |
+
"Namaa Media": 49.59,
|
225 |
+
"Namaa Legal": 44.44,
|
226 |
+
"Navid General Knowledge": 60.29,
|
227 |
+
"Navid Web Search": 46.9,
|
228 |
+
"Navid Islamic Studies": 50.54,
|
229 |
+
"Downloads Last Month": 215,
|
230 |
+
"Num Likes": 2,
|
231 |
+
"License": "apache-2.0"
|
232 |
},
|
233 |
{
|
234 |
+
"Model": "OrdalieTech/Solon-embeddings-large-0.1",
|
235 |
+
"Revision": "main",
|
236 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
"Task": "Reranker",
|
238 |
+
"Average Score": 49.55,
|
239 |
+
"Context Length": 512,
|
240 |
+
"Embedding Dimension": 1024,
|
241 |
+
"Model Size (MB)": 2135.81,
|
242 |
+
"Number of Parameters (Billions)": 0.56,
|
243 |
+
"Namaa Global Knowledge": 48.29,
|
244 |
+
"Namaa Tourism": 51.34,
|
245 |
+
"Namaa Media": 49.63,
|
246 |
+
"Namaa Legal": 43.93,
|
247 |
+
"Navid General Knowledge": 49.86,
|
248 |
+
"Navid Web Search": 50.01,
|
249 |
+
"Navid Islamic Studies": 53.8,
|
250 |
+
"Downloads Last Month": 7825,
|
251 |
+
"Num Likes": 50,
|
252 |
+
"License": "mit"
|
253 |
},
|
254 |
{
|
255 |
+
"Model": "Snowflake/snowflake-arctic-embed-l-v2.0",
|
256 |
+
"Revision": "main",
|
257 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
"Task": "Reranker",
|
259 |
+
"Average Score": 50.7,
|
260 |
+
"Context Length": 8192,
|
261 |
+
"Embedding Dimension": 1024,
|
262 |
+
"Model Size (MB)": 2165.81,
|
263 |
+
"Number of Parameters (Billions)": 0.568,
|
264 |
+
"Namaa Global Knowledge": 47.45,
|
265 |
+
"Namaa Tourism": 48.7,
|
266 |
+
"Namaa Media": 51.26,
|
267 |
+
"Namaa Legal": 49.66,
|
268 |
+
"Navid General Knowledge": 49.72,
|
269 |
+
"Navid Web Search": 55.93,
|
270 |
+
"Navid Islamic Studies": 52.16,
|
271 |
+
"Downloads Last Month": 117067,
|
272 |
+
"Num Likes": 148,
|
273 |
+
"License": "apache-2.0"
|
274 |
},
|
275 |
{
|
276 |
+
"Model": "anondeb/arabertv02_reranker_2021",
|
277 |
+
"Revision": "main",
|
278 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
"Task": "Reranker",
|
280 |
+
"Average Score": 82.28,
|
281 |
+
"Context Length": 512,
|
282 |
+
"Embedding Dimension": 768,
|
283 |
+
"Model Size (MB)": 515.72,
|
284 |
+
"Number of Parameters (Billions)": 0.135,
|
285 |
+
"Namaa Global Knowledge": 76.43,
|
286 |
+
"Namaa Tourism": 77.25,
|
287 |
+
"Namaa Media": 75.3,
|
288 |
+
"Namaa Legal": 82.63,
|
289 |
+
"Navid General Knowledge": 75.05,
|
290 |
+
"Navid Web Search": 94.11,
|
291 |
+
"Navid Islamic Studies": 95.18,
|
292 |
+
"Downloads Last Month": 23,
|
293 |
+
"Num Likes": 0,
|
294 |
+
"License": "cc-by-nc-4.0"
|
295 |
},
|
296 |
{
|
297 |
+
"Model": "asafaya/bert-base-arabic",
|
298 |
+
"Revision": "main",
|
299 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
"Task": "Reranker",
|
301 |
+
"Average Score": 68.89,
|
302 |
+
"Context Length": 512,
|
303 |
+
"Embedding Dimension": 768,
|
304 |
+
"Model Size (MB)": 421.97,
|
305 |
+
"Number of Parameters (Billions)": 0.111,
|
306 |
+
"Namaa Global Knowledge": 63.6,
|
307 |
+
"Namaa Tourism": 59.54,
|
308 |
+
"Namaa Media": 61.14,
|
309 |
+
"Namaa Legal": 72.6,
|
310 |
+
"Navid General Knowledge": 63.27,
|
311 |
+
"Navid Web Search": 86.84,
|
312 |
+
"Navid Islamic Studies": 75.25,
|
313 |
+
"Downloads Last Month": 10439,
|
314 |
+
"Num Likes": 38,
|
315 |
+
"License": "N/A"
|
316 |
},
|
317 |
{
|
318 |
+
"Model": "aubmindlab/bert-base-arabert",
|
319 |
+
"Revision": "main",
|
320 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
"Task": "Reranker",
|
322 |
+
"Average Score": 56.75,
|
323 |
+
"Context Length": 512,
|
324 |
+
"Embedding Dimension": 768,
|
325 |
+
"Model Size (MB)": 515.72,
|
326 |
+
"Number of Parameters (Billions)": 0.135,
|
327 |
+
"Namaa Global Knowledge": 51.19,
|
328 |
+
"Namaa Tourism": 50.61,
|
329 |
+
"Namaa Media": 53.32,
|
330 |
+
"Namaa Legal": 49.75,
|
331 |
+
"Navid General Knowledge": 58.99,
|
332 |
+
"Navid Web Search": 64.7,
|
333 |
+
"Navid Islamic Studies": 68.72,
|
334 |
+
"Downloads Last Month": 50761,
|
335 |
+
"Num Likes": 29,
|
336 |
+
"License": "N/A"
|
337 |
},
|
338 |
{
|
339 |
"Model": "aubmindlab/bert-large-arabertv2",
|
340 |
+
"Revision": "main",
|
341 |
+
"Precision": "i64",
|
342 |
+
"Task": "Reranker",
|
343 |
+
"Average Score": 48.68,
|
344 |
+
"Context Length": 512,
|
345 |
+
"Embedding Dimension": 1024,
|
346 |
+
"Model Size (MB)": 1409.24,
|
347 |
+
"Number of Parameters (Billions)": 0.369,
|
348 |
+
"Namaa Global Knowledge": 46.56,
|
349 |
+
"Namaa Tourism": 46.53,
|
350 |
+
"Namaa Media": 46.39,
|
351 |
+
"Namaa Legal": 45.89,
|
352 |
+
"Navid General Knowledge": 45.88,
|
353 |
+
"Navid Web Search": 63.33,
|
354 |
+
"Navid Islamic Studies": 46.16,
|
355 |
+
"Downloads Last Month": 2059,
|
356 |
"Num Likes": 11,
|
357 |
+
"License": "N/A"
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"Model": "colbert-ir/colbertv2.0",
|
361 |
+
"Revision": "main",
|
362 |
+
"Precision": "i64",
|
363 |
"Task": "Reranker",
|
364 |
+
"Average Score": 52.44,
|
365 |
+
"Context Length": 512,
|
366 |
+
"Embedding Dimension": 768,
|
367 |
+
"Model Size (MB)": 417.64,
|
368 |
+
"Number of Parameters (Billions)": 0.109,
|
369 |
+
"Namaa Global Knowledge": 47.92,
|
370 |
+
"Namaa Tourism": 51.21,
|
371 |
+
"Namaa Media": 50.97,
|
372 |
+
"Namaa Legal": 44.7,
|
373 |
+
"Navid General Knowledge": 76.33,
|
374 |
+
"Navid Web Search": 49.91,
|
375 |
+
"Navid Islamic Studies": 46.06,
|
376 |
+
"Downloads Last Month": 1409633,
|
377 |
+
"Num Likes": 248,
|
378 |
+
"License": "mit"
|
379 |
},
|
380 |
{
|
381 |
+
"Model": "cross-encoder/ms-marco-MiniLM-L-12-v2",
|
382 |
+
"Revision": "main",
|
383 |
+
"Precision": "i64",
|
384 |
+
"Task": "Reranker",
|
385 |
+
"Average Score": 59.62,
|
386 |
+
"Context Length": 512,
|
387 |
+
"Embedding Dimension": 384,
|
388 |
+
"Model Size (MB)": 127.26,
|
389 |
+
"Number of Parameters (Billions)": 0.033,
|
390 |
+
"Namaa Global Knowledge": 62.81,
|
391 |
+
"Namaa Tourism": 59.16,
|
392 |
+
"Namaa Media": 60.86,
|
393 |
+
"Namaa Legal": 68.86,
|
394 |
+
"Navid General Knowledge": 60.42,
|
395 |
+
"Navid Web Search": 51.06,
|
396 |
+
"Navid Islamic Studies": 54.17,
|
397 |
+
"Downloads Last Month": 498422,
|
398 |
+
"Num Likes": 70,
|
399 |
+
"License": "apache-2.0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
},
|
401 |
{
|
402 |
+
"Model": "intfloat/multilingual-e5-large-instruct",
|
403 |
+
"Revision": "main",
|
404 |
+
"Precision": "f16",
|
405 |
+
"Task": "Reranker",
|
406 |
+
"Average Score": 53.46,
|
407 |
+
"Context Length": 512,
|
408 |
+
"Embedding Dimension": 1024,
|
409 |
+
"Model Size (MB)": 1067.91,
|
410 |
+
"Number of Parameters (Billions)": 0.56,
|
411 |
+
"Namaa Global Knowledge": 52.6,
|
412 |
+
"Namaa Tourism": 51.09,
|
413 |
+
"Namaa Media": 52.51,
|
414 |
+
"Namaa Legal": 50.97,
|
415 |
+
"Navid General Knowledge": 67.73,
|
416 |
+
"Navid Web Search": 49.48,
|
417 |
+
"Navid Islamic Studies": 49.83,
|
418 |
+
"Downloads Last Month": 995915,
|
419 |
+
"Num Likes": 416,
|
420 |
+
"License": "mit"
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"Model": "oddadmix/arabic-reranker-v1",
|
424 |
+
"Revision": "main",
|
425 |
+
"Precision": "f32",
|
426 |
+
"Task": "Reranker",
|
427 |
+
"Average Score": 79.93,
|
428 |
+
"Context Length": 512,
|
429 |
+
"Embedding Dimension": 768,
|
430 |
+
"Model Size (MB)": 515.72,
|
431 |
+
"Number of Parameters (Billions)": 0.135,
|
432 |
+
"Namaa Global Knowledge": 74.08,
|
433 |
+
"Namaa Tourism": 72.28,
|
434 |
+
"Namaa Media": 70.31,
|
435 |
+
"Namaa Legal": 78.21,
|
436 |
+
"Navid General Knowledge": 85.0,
|
437 |
+
"Navid Web Search": 85.65,
|
438 |
+
"Navid Islamic Studies": 93.98,
|
439 |
+
"Downloads Last Month": 23,
|
440 |
+
"Num Likes": 1,
|
441 |
+
"License": "N/A"
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"Model": "omarelshehy/Arabic-Retrieval-v1.0",
|
445 |
+
"Revision": "main",
|
446 |
+
"Precision": "f32",
|
447 |
+
"Task": "Reranker",
|
448 |
+
"Average Score": 43.7,
|
449 |
+
"Context Length": 512,
|
450 |
+
"Embedding Dimension": 768,
|
451 |
+
"Model Size (MB)": 515.73,
|
452 |
+
"Number of Parameters (Billions)": 0.135,
|
453 |
+
"Namaa Global Knowledge": 47.98,
|
454 |
+
"Namaa Tourism": 51.39,
|
455 |
+
"Namaa Media": 47.91,
|
456 |
+
"Namaa Legal": 50.77,
|
457 |
+
"Navid General Knowledge": 50.42,
|
458 |
+
"Navid Web Search": 29.07,
|
459 |
+
"Navid Islamic Studies": 28.39,
|
460 |
+
"Downloads Last Month": 174,
|
461 |
+
"Num Likes": 1,
|
462 |
+
"License": "apache-2.0"
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"Model": "sentence-transformers/LaBSE",
|
466 |
+
"Revision": "main",
|
467 |
+
"Precision": "i64",
|
468 |
"Task": "Reranker",
|
469 |
+
"Average Score": 49.88,
|
470 |
+
"Context Length": 256,
|
471 |
+
"Embedding Dimension": 768,
|
472 |
+
"Model Size (MB)": 1798.7,
|
473 |
+
"Number of Parameters (Billions)": 0.472,
|
474 |
+
"Namaa Global Knowledge": 51.04,
|
475 |
+
"Namaa Tourism": 49.33,
|
476 |
+
"Namaa Media": 49.27,
|
477 |
+
"Namaa Legal": 45.63,
|
478 |
+
"Navid General Knowledge": 52.54,
|
479 |
+
"Navid Web Search": 49.96,
|
480 |
+
"Navid Islamic Studies": 51.39,
|
481 |
+
"Downloads Last Month": 558352,
|
482 |
+
"Num Likes": 258,
|
483 |
+
"License": "apache-2.0"
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"Model": "silma-ai/silma-embeddding-matryoshka-v0.1",
|
487 |
+
"Revision": "main",
|
488 |
+
"Precision": "f32",
|
489 |
+
"Task": "Reranker",
|
490 |
+
"Average Score": 44.05,
|
491 |
+
"Context Length": 512,
|
492 |
+
"Embedding Dimension": 768,
|
493 |
+
"Model Size (MB)": 515.72,
|
494 |
+
"Number of Parameters (Billions)": 0.135,
|
495 |
+
"Namaa Global Knowledge": 47.17,
|
496 |
+
"Namaa Tourism": 46.42,
|
497 |
+
"Namaa Media": 47.97,
|
498 |
+
"Namaa Legal": 52.81,
|
499 |
+
"Navid General Knowledge": 54.47,
|
500 |
+
"Navid Web Search": 30.82,
|
501 |
+
"Navid Islamic Studies": 28.66,
|
502 |
+
"Downloads Last Month": 405,
|
503 |
+
"Num Likes": 11,
|
504 |
+
"License": "apache-2.0"
|
505 |
}
|
506 |
]
|
results/retrieval_results.json
CHANGED
@@ -1,162 +1,114 @@
|
|
1 |
[
|
2 |
{
|
3 |
-
"Model": "
|
4 |
-
"Max Tokens": 128,
|
5 |
"Revision": "main",
|
6 |
-
"Precision": "
|
7 |
"Task": "Retriever",
|
8 |
-
"
|
9 |
-
"
|
10 |
-
"
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"Web Search Dataset
|
14 |
-
"
|
15 |
-
"
|
|
|
16 |
"License": "apache-2.0"
|
17 |
},
|
18 |
{
|
19 |
-
"Model": "
|
20 |
-
"Max Tokens": 256,
|
21 |
"Revision": "main",
|
22 |
-
"Precision": "
|
23 |
"Task": "Retriever",
|
|
|
|
|
24 |
"Embedding Dimension": 768,
|
25 |
-
"Model Size (MB)":
|
26 |
-
"
|
27 |
-
"Web Search Dataset
|
28 |
-
"
|
29 |
-
"
|
30 |
-
"
|
31 |
-
"Num Likes": 2,
|
32 |
"License": "apache-2.0"
|
33 |
},
|
34 |
{
|
35 |
-
"Model": "
|
36 |
-
"Max Tokens": 512,
|
37 |
"Revision": "main",
|
38 |
-
"Precision": "
|
39 |
-
"Task": "Retriever",
|
40 |
-
"Embedding Dimension": 1024,
|
41 |
-
"Model Size (MB)": 1067.91,
|
42 |
-
"Web Search Dataset (MRR)": 65.26,
|
43 |
-
"Web Search Dataset (Recall@5)": 74.14,
|
44 |
-
"Web Search Dataset (nDCG@k=None)": 71.66,
|
45 |
-
"Web Search Dataset (Overall Score)": 70.35,
|
46 |
-
"Downloads Last Month": 391080,
|
47 |
-
"Num Likes": 288,
|
48 |
-
"License": "mit"
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"Model": "omarelshehy/Arabic-Retrieval-v1.0",
|
52 |
-
"Max Tokens": 512,
|
53 |
-
"Revision": "main",
|
54 |
-
"Precision": "F32",
|
55 |
"Task": "Retriever",
|
|
|
|
|
56 |
"Embedding Dimension": 768,
|
57 |
-
"Model Size (MB)": 515.
|
58 |
-
"
|
59 |
-
"Web Search Dataset
|
60 |
-
"
|
61 |
-
"
|
62 |
-
"
|
63 |
-
"Num Likes": 0,
|
64 |
"License": "apache-2.0"
|
65 |
},
|
66 |
{
|
67 |
-
"Model": "
|
68 |
-
"Max Tokens": 512,
|
69 |
"Revision": "main",
|
70 |
-
"Precision": "
|
71 |
"Task": "Retriever",
|
|
|
|
|
72 |
"Embedding Dimension": 768,
|
73 |
"Model Size (MB)": 515.72,
|
74 |
-
"
|
75 |
-
"Web Search Dataset
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"
|
79 |
-
"Num Likes": 1,
|
80 |
-
"License": "N/A"
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"Model": "omarelshehy/Arabic-STS-Matryoshka",
|
84 |
-
"Max Tokens": 512,
|
85 |
-
"Revision": "main",
|
86 |
-
"Precision": "F32",
|
87 |
-
"Task": "Retriever",
|
88 |
-
"Embedding Dimension": 1024,
|
89 |
-
"Model Size (MB)": 2135.81,
|
90 |
-
"Web Search Dataset (MRR)": 63.2,
|
91 |
-
"Web Search Dataset (Recall@5)": 74.41,
|
92 |
-
"Web Search Dataset (nDCG@k=None)": 70.43,
|
93 |
-
"Web Search Dataset (Overall Score)": 69.35,
|
94 |
-
"Downloads Last Month": 167,
|
95 |
-
"Num Likes": 2,
|
96 |
"License": "apache-2.0"
|
97 |
},
|
98 |
{
|
99 |
-
"Model": "
|
100 |
-
"Max Tokens": 512,
|
101 |
-
"Revision": "main",
|
102 |
-
"Precision": "F32",
|
103 |
-
"Task": "Retriever",
|
104 |
-
"Embedding Dimension": 1024,
|
105 |
-
"Model Size (MB)": 2135.81,
|
106 |
-
"Web Search Dataset (MRR)": 56.02,
|
107 |
-
"Web Search Dataset (Recall@5)": 67.85,
|
108 |
-
"Web Search Dataset (nDCG@k=None)": 64.47,
|
109 |
-
"Web Search Dataset (Overall Score)": 62.78,
|
110 |
-
"Downloads Last Month": 324,
|
111 |
-
"Num Likes": 1,
|
112 |
-
"License": "N/A"
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"Model": "omarelshehy/arabic-english-sts-matryoshka",
|
116 |
-
"Max Tokens": 512,
|
117 |
"Revision": "main",
|
118 |
-
"Precision": "
|
119 |
"Task": "Retriever",
|
120 |
-
"
|
121 |
-
"
|
122 |
-
"
|
123 |
-
"
|
124 |
-
"
|
125 |
-
"Web Search Dataset
|
126 |
-
"
|
127 |
-
"
|
|
|
128 |
"License": "apache-2.0"
|
129 |
},
|
130 |
{
|
131 |
-
"Model": "
|
132 |
-
"Max Tokens": 512,
|
133 |
"Revision": "main",
|
134 |
-
"Precision": "
|
135 |
"Task": "Retriever",
|
|
|
|
|
136 |
"Embedding Dimension": 768,
|
137 |
"Model Size (MB)": 515.72,
|
138 |
-
"
|
139 |
-
"Web Search Dataset
|
140 |
-
"
|
141 |
-
"
|
142 |
-
"
|
143 |
-
"
|
144 |
-
"License": "apache-2.0"
|
145 |
},
|
146 |
{
|
147 |
-
"Model": "
|
148 |
-
"Max Tokens": 512,
|
149 |
"Revision": "main",
|
150 |
-
"Precision": "
|
151 |
"Task": "Retriever",
|
|
|
|
|
152 |
"Embedding Dimension": 768,
|
153 |
-
"Model Size (MB)":
|
154 |
-
"
|
155 |
-
"Web Search Dataset
|
156 |
-
"
|
157 |
-
"
|
158 |
-
"
|
159 |
-
"
|
160 |
-
"License": "apache-2.0"
|
161 |
}
|
162 |
]
|
|
|
1 |
[
|
2 |
{
|
3 |
+
"Model": "Alibaba-NLP/gte-multilingual-base",
|
|
|
4 |
"Revision": "main",
|
5 |
+
"Precision": "f16",
|
6 |
"Task": "Retriever",
|
7 |
+
"Average Score": 61.02,
|
8 |
+
"Context Length": 8192,
|
9 |
+
"Embedding Dimension": 768,
|
10 |
+
"Model Size (MB)": 582.44,
|
11 |
+
"Number of Parameters (Billions)": 0.305,
|
12 |
+
"Web Search Dataset": 80.2,
|
13 |
+
"Islamic Knowledge Dataset": 41.84,
|
14 |
+
"Downloads Last Month": 1340501,
|
15 |
+
"Num Likes": 233,
|
16 |
"License": "apache-2.0"
|
17 |
},
|
18 |
{
|
19 |
+
"Model": "NAMAA-Space/AraModernBert-Base-STS",
|
|
|
20 |
"Revision": "main",
|
21 |
+
"Precision": "f32",
|
22 |
"Task": "Retriever",
|
23 |
+
"Average Score": 49.99,
|
24 |
+
"Context Length": 512,
|
25 |
"Embedding Dimension": 768,
|
26 |
+
"Model Size (MB)": 568.19,
|
27 |
+
"Number of Parameters (Billions)": 0.149,
|
28 |
+
"Web Search Dataset": 37.9,
|
29 |
+
"Islamic Knowledge Dataset": 62.08,
|
30 |
+
"Downloads Last Month": 205,
|
31 |
+
"Num Likes": 6,
|
|
|
32 |
"License": "apache-2.0"
|
33 |
},
|
34 |
{
|
35 |
+
"Model": "Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka",
|
|
|
36 |
"Revision": "main",
|
37 |
+
"Precision": "f32",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"Task": "Retriever",
|
39 |
+
"Average Score": 42.54,
|
40 |
+
"Context Length": 512,
|
41 |
"Embedding Dimension": 768,
|
42 |
+
"Model Size (MB)": 515.72,
|
43 |
+
"Number of Parameters (Billions)": 0.135,
|
44 |
+
"Web Search Dataset": 44.49,
|
45 |
+
"Islamic Knowledge Dataset": 40.59,
|
46 |
+
"Downloads Last Month": 697,
|
47 |
+
"Num Likes": 10,
|
|
|
48 |
"License": "apache-2.0"
|
49 |
},
|
50 |
{
|
51 |
+
"Model": "Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2",
|
|
|
52 |
"Revision": "main",
|
53 |
+
"Precision": "f32",
|
54 |
"Task": "Retriever",
|
55 |
+
"Average Score": 55.14,
|
56 |
+
"Context Length": 512,
|
57 |
"Embedding Dimension": 768,
|
58 |
"Model Size (MB)": 515.72,
|
59 |
+
"Number of Parameters (Billions)": 0.135,
|
60 |
+
"Web Search Dataset": 50.93,
|
61 |
+
"Islamic Knowledge Dataset": 59.35,
|
62 |
+
"Downloads Last Month": 8143,
|
63 |
+
"Num Likes": 10,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
"License": "apache-2.0"
|
65 |
},
|
66 |
{
|
67 |
+
"Model": "Omartificial-Intelligence-Space/GATE-AraBert-v1",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
"Revision": "main",
|
69 |
+
"Precision": "f16",
|
70 |
"Task": "Retriever",
|
71 |
+
"Average Score": 53.53,
|
72 |
+
"Context Length": 512,
|
73 |
+
"Embedding Dimension": 768,
|
74 |
+
"Model Size (MB)": 257.86,
|
75 |
+
"Number of Parameters (Billions)": 0.135,
|
76 |
+
"Web Search Dataset": 50.97,
|
77 |
+
"Islamic Knowledge Dataset": 56.09,
|
78 |
+
"Downloads Last Month": 3885,
|
79 |
+
"Num Likes": 12,
|
80 |
"License": "apache-2.0"
|
81 |
},
|
82 |
{
|
83 |
+
"Model": "mohamed2811/Muffakir_Embedding",
|
|
|
84 |
"Revision": "main",
|
85 |
+
"Precision": "f32",
|
86 |
"Task": "Retriever",
|
87 |
+
"Average Score": 60.03,
|
88 |
+
"Context Length": 512,
|
89 |
"Embedding Dimension": 768,
|
90 |
"Model Size (MB)": 515.72,
|
91 |
+
"Number of Parameters (Billions)": 0.135,
|
92 |
+
"Web Search Dataset": 54.5,
|
93 |
+
"Islamic Knowledge Dataset": 65.56,
|
94 |
+
"Downloads Last Month": 615,
|
95 |
+
"Num Likes": 1,
|
96 |
+
"License": "N/A"
|
|
|
97 |
},
|
98 |
{
|
99 |
+
"Model": "omarelshehy/Arabic-STS-Matryoshka-V2",
|
|
|
100 |
"Revision": "main",
|
101 |
+
"Precision": "f16",
|
102 |
"Task": "Retriever",
|
103 |
+
"Average Score": 52.38,
|
104 |
+
"Context Length": 512,
|
105 |
"Embedding Dimension": 768,
|
106 |
+
"Model Size (MB)": 257.86,
|
107 |
+
"Number of Parameters (Billions)": 0.135,
|
108 |
+
"Web Search Dataset": 47.25,
|
109 |
+
"Islamic Knowledge Dataset": 57.5,
|
110 |
+
"Downloads Last Month": 263,
|
111 |
+
"Num Likes": 1,
|
112 |
+
"License": "N/A"
|
|
|
113 |
}
|
114 |
]
|
retrieval_leaderboard.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from utils import load_json_results
|
3 |
+
from leaderboard_tab import search_leaderboard, update_columns_to_show, create_leaderboard_tab
|
4 |
+
|
5 |
+
# Constants
|
6 |
+
RETRIEVAL_ABOUT_SECTION = """
|
7 |
+
## About Retrieval Evaluation
|
8 |
+
|
9 |
+
The retrieval evaluation assesses a model's ability to find and retrieve relevant information from a large corpus of Arabic text. Models are evaluated on:
|
10 |
+
|
11 |
+
### Web Search Dataset Metrics
|
12 |
+
- **MRR (Mean Reciprocal Rank)**: Measures the ranking quality by focusing on the position of the first relevant result
|
13 |
+
- **nDCG (Normalized Discounted Cumulative Gain)**: Evaluates the ranking quality considering all relevant results
|
14 |
+
- **Recall@5**: Measures the proportion of relevant documents found in the top 5 results
|
15 |
+
- **Overall Score**: Combined score calculated as the average of MRR, nDCG, and Recall@5
|
16 |
+
|
17 |
+
### Model Requirements
|
18 |
+
- Must support Arabic text embeddings
|
19 |
+
- Should handle queries of at least 512 tokens
|
20 |
+
- Must work with `sentence-transformers` library
|
21 |
+
|
22 |
+
### Evaluation Process
|
23 |
+
1. Models process Arabic web search queries
|
24 |
+
2. Retrieved documents are evaluated using:
|
25 |
+
- MRR for first relevant result positioning
|
26 |
+
- nDCG for overall ranking quality
|
27 |
+
- Recall@5 for top results accuracy
|
28 |
+
3. Metrics are averaged to calculate the overall score
|
29 |
+
4. Models are ranked based on their overall performance
|
30 |
+
|
31 |
+
### How to Prepare Your Model
|
32 |
+
- Ensure your model is publicly available on HuggingFace Hub (We don't support private model evaluations yet)
|
33 |
+
- Model should output fixed-dimension embeddings for text
|
34 |
+
- Support batch processing for efficient evaluation (this is default if you use `sentence-transformers`)
|
35 |
+
"""
|
36 |
+
|
37 |
+
# Global variables
|
38 |
+
retrieval_df = None
|
39 |
+
|
40 |
+
def load_retrieval_results(prepare_for_display=False, sort_col=None, drop_cols=None):
|
41 |
+
dataframe_path = Path(__file__).parent / "results" / "retrieval_results.json"
|
42 |
+
return load_json_results(
|
43 |
+
dataframe_path,
|
44 |
+
prepare_for_display=prepare_for_display,
|
45 |
+
sort_col=sort_col,
|
46 |
+
drop_cols=drop_cols
|
47 |
+
)
|
48 |
+
|
49 |
+
def load_retrieval_leaderboard():
|
50 |
+
"""Load and prepare the retrieval leaderboard data"""
|
51 |
+
global retrieval_df
|
52 |
+
|
53 |
+
# Prepare retrieval dataframe
|
54 |
+
retrieval_df = load_retrieval_results(True, "Average Score", drop_cols=["Revision", "Precision", "Task"])
|
55 |
+
retrieval_df.insert(0, "Rank", range(1, 1 + len(retrieval_df)))
|
56 |
+
|
57 |
+
return retrieval_df
|
58 |
+
|
59 |
+
def retrieval_search_leaderboard(model_name, columns_to_show):
|
60 |
+
"""Search function for retrieval leaderboard"""
|
61 |
+
return search_leaderboard(retrieval_df, model_name, columns_to_show)
|
62 |
+
|
63 |
+
def update_retrieval_columns_to_show(columns_to_show):
|
64 |
+
"""Update displayed columns for retrieval leaderboard"""
|
65 |
+
return update_columns_to_show(retrieval_df, columns_to_show)
|
66 |
+
|
67 |
+
def create_retrieval_tab():
|
68 |
+
"""Create the complete retrieval leaderboard tab"""
|
69 |
+
global retrieval_df
|
70 |
+
|
71 |
+
# Load data if not already loaded
|
72 |
+
if retrieval_df is None:
|
73 |
+
retrieval_df = load_retrieval_leaderboard()
|
74 |
+
|
75 |
+
# Define default columns to show
|
76 |
+
default_columns = ["Rank", "Model", "Average Score", "Model Size (MB)", "Context Length",
|
77 |
+
"Embedding Dimension", "Web Search Dataset", "Islamic Knowledge Dataset"]
|
78 |
+
|
79 |
+
# Create and return the tab
|
80 |
+
return create_leaderboard_tab(
|
81 |
+
df=retrieval_df,
|
82 |
+
initial_columns_to_show=default_columns,
|
83 |
+
search_function=retrieval_search_leaderboard,
|
84 |
+
update_function=update_retrieval_columns_to_show,
|
85 |
+
about_section=RETRIEVAL_ABOUT_SECTION,
|
86 |
+
task_type="Retriever"
|
87 |
+
)
|
utils.py
CHANGED
@@ -12,8 +12,11 @@ DATASET_REPO_ID = f"{OWNER}/requests-dataset"
|
|
12 |
|
13 |
results_dir = Path(__file__).parent / "results"
|
14 |
|
15 |
-
#
|
16 |
-
HF_TOKEN = os.environ.get('HF_TOKEN'
|
|
|
|
|
|
|
17 |
|
18 |
# Add a helper to load JSON results with optional formatting.
|
19 |
def load_json_results(file_path: Path, prepare_for_display=False, sort_col=None, drop_cols=None):
|
@@ -30,24 +33,6 @@ def load_json_results(file_path: Path, prepare_for_display=False, sort_col=None,
|
|
30 |
df.sort_values(sort_col, ascending=False, inplace=True)
|
31 |
return df
|
32 |
|
33 |
-
def load_retrieval_results(prepare_for_display=False, sort_col=None, drop_cols=None):
|
34 |
-
dataframe_path = results_dir / "retrieval_results.json"
|
35 |
-
return load_json_results(
|
36 |
-
dataframe_path,
|
37 |
-
prepare_for_display=prepare_for_display,
|
38 |
-
sort_col=sort_col,
|
39 |
-
drop_cols=drop_cols
|
40 |
-
)
|
41 |
-
|
42 |
-
def load_reranking_results(prepare_for_display=False, sort_col=None, drop_cols=None):
|
43 |
-
dataframe_path = results_dir / "reranking_results.json"
|
44 |
-
return load_json_results(
|
45 |
-
dataframe_path,
|
46 |
-
prepare_for_display=prepare_for_display,
|
47 |
-
sort_col=sort_col,
|
48 |
-
drop_cols=drop_cols
|
49 |
-
)
|
50 |
-
|
51 |
def get_model_info(model_id, verbose=False):
|
52 |
model_info = api.model_info(model_id)
|
53 |
num_downloads = model_info.downloads
|
@@ -71,16 +56,12 @@ def fetch_model_information(model_name):
|
|
71 |
return
|
72 |
return gr.update(choices=supported_precisions, value=supported_precisions[0]), license, num_parameters, num_downloads, num_likes
|
73 |
|
74 |
-
def submit_model(model_name, revision, precision, params, license, task):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
else:
|
81 |
-
return "Task is not supported π€·ββοΈ"
|
82 |
-
|
83 |
-
existing_models_results = df[['Model', 'Revision', 'Precision', 'Task']]
|
84 |
|
85 |
# Handle 'Missing' precision
|
86 |
if precision == 'Missing':
|
@@ -92,14 +73,6 @@ def submit_model(model_name, revision, precision, params, license, task):
|
|
92 |
df_pending = load_requests('pending')
|
93 |
df_finished = load_requests('finished')
|
94 |
|
95 |
-
# Check if model is already evaluated
|
96 |
-
model_exists_in_results = ((existing_models_results['Model'] == model_name) &
|
97 |
-
(existing_models_results['Revision'] == revision) &
|
98 |
-
(existing_models_results['Precision'] == precision.capitalize()) &
|
99 |
-
(existing_models_results['Task'] == task)).any()
|
100 |
-
if model_exists_in_results:
|
101 |
-
return f"Model {model_name} has already been evaluated as a {task} π"
|
102 |
-
|
103 |
# Check if model is in pending requests
|
104 |
if not df_pending.empty:
|
105 |
existing_models_pending = df_pending[['model_name', 'revision', 'precision', 'task']]
|
@@ -108,7 +81,7 @@ def submit_model(model_name, revision, precision, params, license, task):
|
|
108 |
(existing_models_pending['precision'] == precision.capitalize()) &
|
109 |
(existing_models_pending['task'] == task)).any()
|
110 |
if model_exists_in_pending:
|
111 |
-
return f"Model {model_name} is already in the evaluation queue as a {task} π"
|
112 |
|
113 |
# Check if model is in finished requests
|
114 |
if not df_finished.empty:
|
@@ -267,11 +240,6 @@ def submit_gradio_module(task_type):
|
|
267 |
inputs=[model_name_input],
|
268 |
outputs=fetch_outputs
|
269 |
)
|
270 |
-
submit_button.click(
|
271 |
-
submit_model,
|
272 |
-
inputs=[model_name_input, revision_input, precision_input, params_input, license_input, var],
|
273 |
-
outputs=submission_result
|
274 |
-
)
|
275 |
|
276 |
# Load pending, finished, and failed requests
|
277 |
df_pending = load_requests('pending', task_type)
|
@@ -282,9 +250,10 @@ def submit_gradio_module(task_type):
|
|
282 |
gr.Markdown("## Evaluation Status")
|
283 |
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
|
284 |
if not df_pending.empty:
|
285 |
-
gr.Dataframe(df_pending)
|
286 |
else:
|
287 |
gr.Markdown("No pending evaluations.")
|
|
|
288 |
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
|
289 |
if not df_finished.empty:
|
290 |
gr.Dataframe(df_finished)
|
@@ -295,3 +264,9 @@ def submit_gradio_module(task_type):
|
|
295 |
gr.Dataframe(df_failed)
|
296 |
else:
|
297 |
gr.Markdown("No failed evaluations.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
results_dir = Path(__file__).parent / "results"
|
14 |
|
15 |
+
# Replace the current HF_TOKEN line with this to add a helpful error message if token is missing
|
16 |
+
HF_TOKEN = os.environ.get('HF_TOKEN')
|
17 |
+
if not HF_TOKEN:
|
18 |
+
print("Warning: HF_TOKEN environment variable not set. API operations requiring authentication will fail.")
|
19 |
+
HF_TOKEN = None
|
20 |
|
21 |
# Add a helper to load JSON results with optional formatting.
|
22 |
def load_json_results(file_path: Path, prepare_for_display=False, sort_col=None, drop_cols=None):
|
|
|
33 |
df.sort_values(sort_col, ascending=False, inplace=True)
|
34 |
return df
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def get_model_info(model_id, verbose=False):
|
37 |
model_info = api.model_info(model_id)
|
38 |
num_downloads = model_info.downloads
|
|
|
56 |
return
|
57 |
return gr.update(choices=supported_precisions, value=supported_precisions[0]), license, num_parameters, num_downloads, num_likes
|
58 |
|
59 |
+
def submit_model(model_name, revision, precision, params, license, task, pending_gradio_df):
|
60 |
+
try:
|
61 |
+
if float(params) > 5000:
|
62 |
+
return "Model size should be less than 5000 million parameters (5 billion) π", pending_gradio_df
|
63 |
+
except ValueError:
|
64 |
+
gr.Error("The parameter count is not present or is not a number. Please make sure its available and its correct"),
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Handle 'Missing' precision
|
67 |
if precision == 'Missing':
|
|
|
73 |
df_pending = load_requests('pending')
|
74 |
df_finished = load_requests('finished')
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Check if model is in pending requests
|
77 |
if not df_pending.empty:
|
78 |
existing_models_pending = df_pending[['model_name', 'revision', 'precision', 'task']]
|
|
|
81 |
(existing_models_pending['precision'] == precision.capitalize()) &
|
82 |
(existing_models_pending['task'] == task)).any()
|
83 |
if model_exists_in_pending:
|
84 |
+
return f"Model {model_name} is already in the evaluation queue as a {task} π", pending_gradio_df
|
85 |
|
86 |
# Check if model is in finished requests
|
87 |
if not df_finished.empty:
|
|
|
240 |
inputs=[model_name_input],
|
241 |
outputs=fetch_outputs
|
242 |
)
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
# Load pending, finished, and failed requests
|
245 |
df_pending = load_requests('pending', task_type)
|
|
|
250 |
gr.Markdown("## Evaluation Status")
|
251 |
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
|
252 |
if not df_pending.empty:
|
253 |
+
pending_gradio_df = gr.Dataframe(df_pending)
|
254 |
else:
|
255 |
gr.Markdown("No pending evaluations.")
|
256 |
+
pending_gradio_df = None
|
257 |
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
|
258 |
if not df_finished.empty:
|
259 |
gr.Dataframe(df_finished)
|
|
|
264 |
gr.Dataframe(df_failed)
|
265 |
else:
|
266 |
gr.Markdown("No failed evaluations.")
|
267 |
+
|
268 |
+
submit_button.click(
|
269 |
+
submit_model,
|
270 |
+
inputs=[model_name_input, revision_input, precision_input, params_input, license_input, var, pending_gradio_df],
|
271 |
+
outputs=[submission_result, pending_gradio_df],
|
272 |
+
)
|