MohamedRashad's picture
Add fuzzywuzzy dependency and update model submission functions in utils.py
3a93505
raw
history blame
10.2 kB
import gradio as gr
import pandas as pd
import json
import os
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
api = HfApi()
OWNER = "Navid-AI"
DATASET_REPO_ID = f"{OWNER}/requests-dataset"
def load_retrieval_results():
base_path = Path(__file__).parent
results_dir = base_path / "assets" / "results"
retrieval_dataframe_path = results_dir / "retrieval_results.json"
if not retrieval_dataframe_path.exists():
df = pd.DataFrame(columns=["Model", "Model Size", "Embedding Dimension", "Max Tokens", "Web Search Dataset (MRR)", "Web Search Dataset (nDCG@k=None)"])
else:
df = pd.read_json(retrieval_dataframe_path)
return df
def get_model_info(model_id, verbose=False):
model_info = api.model_info(model_id)
num_downloads = model_info.downloads
num_likes = model_info.likes
license = model_info.card_data["license"]
num_parameters = round(model_info.safetensors.total / 1e6)
supported_precisions = list(model_info.safetensors.parameters.keys())
if verbose:
print(f"Model '{model_id}' has {num_downloads} downloads, {num_likes} likes, and is licensed under {license}.")
print(f"The model has approximately {num_parameters:.2f} billion parameters.")
print(f"The model supports the following precisions: {supported_precisions}")
return num_downloads, num_likes, license, num_parameters, supported_precisions
def fetch_model_information(model_name):
try:
_, _, license, num_parameters, supported_precisions = get_model_info(model_name)
if len(supported_precisions) == 0:
supported_precisions = [None]
except Exception as e:
gr.Error(f"**Error: Could not fetch model information. {str(e)}**")
return
return gr.update(choices=supported_precisions, value=supported_precisions[0]), num_parameters, license
def submit_model(model_name, revision, precision, params, license):
# Load existing evaluations
df_retrieval = load_retrieval_results()
if df_retrieval.empty:
return "**Error: Could not load the retrieval results.**"
existing_models_results = df_retrieval[['Model']]
# Handle 'Missing' precision
if precision == 'Missing':
precision = None
else:
precision = precision.strip().lower()
# Load pending and finished requests from the dataset repository
df_pending = load_requests('pending')
df_finished = load_requests('finished')
# Check if model is already evaluated
model_exists_in_results = ((existing_models_results['Model Name'] == model_name) &
(existing_models_results['Revision'] == revision) &
(existing_models_results['Precision'] == precision)).any()
if model_exists_in_results:
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
# Check if model is in pending requests
if not df_pending.empty:
existing_models_pending = df_pending[['model_name', 'revision', 'precision']]
model_exists_in_pending = ((existing_models_pending['model_name'] == model_name) &
(existing_models_pending['revision'] == revision) &
(existing_models_pending['precision'] == precision)).any()
if model_exists_in_pending:
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' is already in the pending evaluations.**"
# Check if model is in finished requests
if not df_finished.empty:
existing_models_finished = df_finished[['model_name', 'revision', 'precision']]
model_exists_in_finished = ((existing_models_finished['model_name'] == model_name) &
(existing_models_finished['revision'] == revision) &
(existing_models_finished['precision'] == precision)).any()
if model_exists_in_finished:
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
# Check if model exists on HuggingFace Hub
try:
api.model_info(model_name)
except Exception as e:
return f"**Error: Could not find model '{model_name}' on HuggingFace Hub. Please ensure the model name is correct and the model is public.**"
# Proceed with submission
status = "PENDING"
# Prepare the submission data
submission = {
"model_name": model_name,
"license": license,
"revision": revision,
"precision": precision,
"status": status,
"params": params
}
# Serialize the submission to JSON
submission_json = json.dumps(submission, indent=2)
# Define the file path in the repository
org_model = model_name.split('/')
if len(org_model) != 2:
return "**Please enter the full model name including the organization or username, e.g., 'intfloat/multilingual-e5-large-instruct'**"
org, model_id = org_model
precision_str = precision if precision else 'Missing'
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}.json"
# Upload the submission to the dataset repository
try:
hf_api_token = os.environ.get('HF_API_TOKEN', None)
api.upload_file(
path_or_fileobj=submission_json.encode('utf-8'),
path_in_repo=file_path_in_repo,
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=hf_api_token
)
except Exception as e:
return f"**Error: Could not submit the model. {str(e)}**"
return f"**Model '{model_name}' has been submitted for evaluation.**"
def load_requests(status_folder):
api = HfApi()
requests_data = []
folder_path_in_repo = status_folder # 'pending', 'finished', or 'failed'
hf_api_token = os.environ.get('HF_TOKEN', None)
try:
# List files in the dataset repository
files_info = api.list_repo_files(
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=hf_api_token
)
except Exception as e:
print(f"Error accessing dataset repository: {e}")
return pd.DataFrame() # Return empty DataFrame if repository not found or inaccessible
# Filter files in the desired folder
files_in_folder = [f for f in files_info if f.startswith(f"{folder_path_in_repo}/") and f.endswith('.json')]
for file_path in files_in_folder:
try:
# Download the JSON file
local_file_path = hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=file_path,
repo_type="dataset",
token=hf_api_token
)
# Load JSON data
with open(local_file_path, 'r') as f:
request = json.load(f)
requests_data.append(request)
except Exception as e:
print(f"Error loading file {file_path}: {e}")
continue # Skip files that can't be loaded
df = pd.DataFrame(requests_data)
return df
def submit_gradio_module(type):
with gr.Tab(f"Submit {type}") as submitter_tab:
with gr.Row(equal_height=True):
model_name_input = gr.Textbox(
label="Model",
placeholder="Enter the full model name from HuggingFace Hub (e.g., intfloat/multilingual-e5-large-instruct)",
scale=4,
)
fetch_data_button = gr.Button(value="Auto Fetch Model Info", variant="secondary")
with gr.Row():
precision_input = gr.Dropdown(
choices=["F16", "F32", "BF16", "I8", "U8", "I16"],
label="Precision",
value="F16"
)
params_input = gr.Textbox(
label="Params (in Millions)",
placeholder="Enter the approximate number of parameters as Integer (e.g., 7, 13, 30, 70 ...)"
)
with gr.Row():
license_input = gr.Textbox(
label="License",
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
value="Open"
)
revision_input = gr.Textbox(
label="Revision",
placeholder="main",
value="main"
)
submit_button = gr.Button("Submit Model", variant="primary")
submission_result = gr.Markdown()
fetch_outputs = [precision_input, params_input, license_input]
fetch_data_button.click(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
model_name_input.submit(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
submit_button.click(
submit_model,
inputs=[model_name_input, revision_input, precision_input, params_input, license_input],
outputs=submission_result
)
# Load pending, finished, and failed requests
df_pending = load_requests('pending')
df_finished = load_requests('finished')
df_failed = load_requests('failed')
# Display the tables
gr.Markdown("## Evaluation Status")
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
if not df_pending.empty:
gr.Dataframe(df_pending)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
if not df_finished.empty:
gr.Dataframe(df_finished)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
if not df_failed.empty:
gr.Dataframe(df_failed)
else:
gr.Markdown("No failed evaluations.")
return submitter_tab