Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
from datasets import load_dataset
|
3 |
import gradio as gr
|
4 |
import torch
|
@@ -11,12 +11,10 @@ Generate a poetry in Arabic.
|
|
11 |
pipe_ar = pipeline('text-generation', framework='pt', model='akhooli/ap2023', tokenizer='akhooli/ap2023')
|
12 |
|
13 |
"""### **English: Text-Generation:**
|
14 |
-
Generate a poetry in English
|
15 |
"""
|
16 |
|
17 |
-
|
18 |
-
tokenizer_en = AutoTokenizer.from_pretrained("ashiqabdulkhader/GPT2-Poet")
|
19 |
-
model_en = AutoModelForCausalLM.from_pretrained("ashiqabdulkhader/GPT2-Poet")
|
20 |
|
21 |
"""### **Arabic and English: Text-To-Speech:**
|
22 |
Convert the Arabic/English poetry to speech.
|
@@ -56,14 +54,14 @@ This function will receive 2 inputs from the Gradio interface, and execute the f
|
|
56 |
def generate_poem(selected_language, text):
|
57 |
try:
|
58 |
if selected_language == "English":
|
59 |
-
poem = generate_poem_english(text)
|
60 |
-
sampling_rate, audio_data = text_to_speech_english(poem)
|
61 |
-
image = generate_image_from_poem(
|
62 |
elif selected_language == "Arabic":
|
63 |
-
poem = generate_poem_arabic(text)
|
64 |
-
sampling_rate, audio_data = text_to_speech_arabic(poem)
|
65 |
-
translated_text = translate_arabic_to_english(
|
66 |
-
image = generate_image_from_poem(translated_text)
|
67 |
|
68 |
return poem, (sampling_rate, audio_data), image
|
69 |
except Exception as e:
|
@@ -75,18 +73,20 @@ This function is responsible for generating a poem (text) in Arabic or English,
|
|
75 |
|
76 |
# Poem generation for Arabic
|
77 |
def generate_poem_arabic(text):
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
return clean_text
|
83 |
|
84 |
-
# Poem generation for English
|
85 |
def generate_poem_english(text):
|
86 |
-
|
87 |
-
|
88 |
-
generated_text = tokenizer_en.decode(outputs[0], skip_special_tokens=True)
|
89 |
-
clean_text = generated_text.replace("</s>", "") # Clean any unwanted tokens
|
90 |
return clean_text
|
91 |
|
92 |
"""### **Audio Function:**
|
@@ -172,6 +172,7 @@ Provide 4 predefined inputs to demonstrate how the interface works.
|
|
172 |
"""
|
173 |
|
174 |
examples = [
|
|
|
175 |
["English", "The shining sun rises over the calm ocean"],
|
176 |
["Arabic", "الورود تتفتح في الربيع"],
|
177 |
["English", "The night sky is filled with stars and dreams"],
|
@@ -185,15 +186,17 @@ Creating a Gradio interface to generate a poem, read the poem, and generate an i
|
|
185 |
my_model = gr.Interface(
|
186 |
fn=generate_poem, # The primary function that will receive the inputs (language and the starter of the poem)
|
187 |
inputs=[
|
188 |
-
gr.Dropdown(["English", "Arabic"], label="Select Language"),
|
189 |
gr.Textbox(label="Enter a sentence") # Textbox where the user will input a sentence or phrase to generate the poem
|
190 |
],
|
|
|
191 |
outputs=[
|
192 |
gr.Textbox(label="Generated Poem", lines=10), # Textbox to display the generated poem
|
193 |
gr.Audio(label="Generated Audio", type="numpy"), # Audio output for the generated poem
|
194 |
gr.Image(label="Generated Image") # Image output for the generated image
|
195 |
],
|
|
|
196 |
examples=examples, # Predefined examples to guide the user
|
197 |
css=custom_css # Applying custom CSS
|
198 |
)
|
199 |
-
my_model.launch()
|
|
|
1 |
+
from transformers import pipeline
|
2 |
from datasets import load_dataset
|
3 |
import gradio as gr
|
4 |
import torch
|
|
|
11 |
pipe_ar = pipeline('text-generation', framework='pt', model='akhooli/ap2023', tokenizer='akhooli/ap2023')
|
12 |
|
13 |
"""### **English: Text-Generation:**
|
14 |
+
Generate a poetry in English.
|
15 |
"""
|
16 |
|
17 |
+
pipe_en = pipeline("text-generation", model="ashiqabdulkhader/GPT2-Poet", from_tf=True)
|
|
|
|
|
18 |
|
19 |
"""### **Arabic and English: Text-To-Speech:**
|
20 |
Convert the Arabic/English poetry to speech.
|
|
|
54 |
def generate_poem(selected_language, text):
|
55 |
try:
|
56 |
if selected_language == "English":
|
57 |
+
poem = generate_poem_english(text) # Return the generated poem from the generate_poem_english function
|
58 |
+
sampling_rate, audio_data = text_to_speech_english(poem) # Return the audio from the text_to_speech_english function
|
59 |
+
image = generate_image_from_poem(text) # Return the image from the generate_image_from_poem function
|
60 |
elif selected_language == "Arabic":
|
61 |
+
poem = generate_poem_arabic(text) # Return the generated poem from the generate_poem_arabic function
|
62 |
+
sampling_rate, audio_data = text_to_speech_arabic(poem) # Return the audio from the text_to_speech_arabic function
|
63 |
+
translated_text = translate_arabic_to_english(text) # Return the translated poem from Arabic to English
|
64 |
+
image = generate_image_from_poem(translated_text) # Return the image from the generate_image_from_poem function
|
65 |
|
66 |
return poem, (sampling_rate, audio_data), image
|
67 |
except Exception as e:
|
|
|
73 |
|
74 |
# Poem generation for Arabic
|
75 |
def generate_poem_arabic(text):
|
76 |
+
temp = 1.0
|
77 |
+
topk = 50
|
78 |
+
topp = 0.9
|
79 |
+
penalty = 1.2
|
80 |
+
generated_text = pipe_ar(text, max_length=96, do_sample=True, temperature=temp, top_k=topk, top_p=topp, repetition_penalty=penalty,
|
81 |
+
min_length=64, no_repeat_ngram_size=3, return_full_text=True,
|
82 |
+
num_beams=5, num_return_sequences=1)[0]["generated_text"]
|
83 |
+
clean_text = generated_text.replace("-", "") # To get rid of the dashes generated by the model.
|
84 |
return clean_text
|
85 |
|
86 |
+
# Poem generation for English
|
87 |
def generate_poem_english(text):
|
88 |
+
generated_text = pipe_en(text, do_sample=True, max_length=100, top_k=50, top_p=0.9, temperature=1.0, num_return_sequences=3)[0]['generated_text']
|
89 |
+
clean_text = generated_text.replace("</s>", "") # To get rid of the </s> generated by the model.
|
|
|
|
|
90 |
return clean_text
|
91 |
|
92 |
"""### **Audio Function:**
|
|
|
172 |
"""
|
173 |
|
174 |
examples = [
|
175 |
+
# First parameter is for the dropdown menu, and the second parameter is for the starter of the poem
|
176 |
["English", "The shining sun rises over the calm ocean"],
|
177 |
["Arabic", "الورود تتفتح في الربيع"],
|
178 |
["English", "The night sky is filled with stars and dreams"],
|
|
|
186 |
my_model = gr.Interface(
|
187 |
fn=generate_poem, # The primary function that will receive the inputs (language and the starter of the poem)
|
188 |
inputs=[
|
189 |
+
gr.Dropdown(["English", "Arabic"], label="Select Language"), # Dropdown menu to select the language, either "English" or "Arabic"
|
190 |
gr.Textbox(label="Enter a sentence") # Textbox where the user will input a sentence or phrase to generate the poem
|
191 |
],
|
192 |
+
|
193 |
outputs=[
|
194 |
gr.Textbox(label="Generated Poem", lines=10), # Textbox to display the generated poem
|
195 |
gr.Audio(label="Generated Audio", type="numpy"), # Audio output for the generated poem
|
196 |
gr.Image(label="Generated Image") # Image output for the generated image
|
197 |
],
|
198 |
+
|
199 |
examples=examples, # Predefined examples to guide the user
|
200 |
css=custom_css # Applying custom CSS
|
201 |
)
|
202 |
+
my_model.launch()
|