from transformers import pipeline def classifyA(text): """ Extracts labels and scores from the input data, maps the labels using the provided mapping dictionary, and returns a list of formatted label-score strings. """ from transformers import pipeline classification = pipeline(task="text-classification", model="Hashuz/AS_MentalQAU", return_all_scores=True) result = [] mapping = { 'info': 'تقديم معلومة', 'guid': 'توجيه أو ارشاد', 'support': 'دعم نفسي' } output = classification(text) for item in output[0]: label = item['label'] label = mapping.get(label) score = item['score'] if score > 0.5: result.append(label) return ', '.join(result) def classifyQ(text): """ Extracts labels and scores from the input data, maps the labels using the provided mapping dictionary, and returns a list of formatted label-score strings. """ from transformers import pipeline classification = pipeline(task="text-classification", model="Hashuz/QT_MentalQA", return_all_scores=True) result = [] mapping = { 'diagnosis': 'فحص', 'treatment': 'علاج', 'anatomy': 'التشريح', 'epidemiology': 'الأوبئة', 'lifestyle': 'نمط الحياة', 'provider': 'مقدم الخدمة', 'other': 'غير محدد' } output = classification(text) for item in output[0]: label = item['label'] label = mapping.get(label) score = item['score'] if score > 0.5: result.append(label) return ', '.join(result)