""" IMPORTS HERE """ import chainlit as cl from qdrant_client import QdrantClient from qdrant_client.http.models import Distance, VectorParams from langchain_qdrant import QdrantVectorStore from operator import itemgetter from langchain_core.runnables.passthrough import RunnablePassthrough from langchain_core.runnables.config import RunnableConfig import uuid from prompts import chat_prompt from handle_files import split_file from models import chat_model, cached_embedder """ GLOBAL CODE HERE """ # Typical QDrant Client Set-up collection_name = f"pdf_to_parse_{uuid.uuid4()}" client = QdrantClient(":memory:") client.create_collection( collection_name=collection_name, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) # Typical QDrant Vector Store Set-up vectorstore = QdrantVectorStore( client=client, collection_name=collection_name, embedding=cached_embedder) ### On Chat Start (Session Start) Section ### @cl.on_chat_start async def on_chat_start(): """ SESSION SPECIFIC CODE HERE """ files = None # Wait for the user to upload a file while files == None: files = await cl.AskFileMessage( content="Please upload a PDF File file to begin!", accept=["application/pdf"], max_size_mb=20, timeout=180, ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`..." ) await msg.send() docs = split_file(file) vectorstore.add_documents(docs) retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 15}) retrieval_augmented_qa_chain = ( {"context": itemgetter("question") | retriever, "question": itemgetter("question")} | RunnablePassthrough.assign(context=itemgetter("context")) | chat_prompt | chat_model ) msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.send() cl.user_session.set("chain", retrieval_augmented_qa_chain) # ### Rename Chains ### @cl.author_rename def rename(orig_author: str): """ RENAME CODE HERE """ rename_dict = {"ChatOpenAI": "the Generator ...", "VectorStoreRetriever" : "the Retriever"} return rename_dict.get(orig_author, orig_author) ### On Message Section ### @cl.on_message async def main(message: cl.Message): """ MESSAGE CODE HERE """ chain = cl.user_session.get("chain") msg = cl.Message(content="") async for stream_response in chain.astream( {"question":message.content}, config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]) ): await msg.stream_token(stream_response.content) await msg.send()