### Mike Dean Experiments ### Import Section ### """ IMPORTS HERE """ import chainlit as cl import os from dotenv import load_dotenv from chainlit import AskFileMessage from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyMuPDFLoader from qdrant_client import QdrantClient from qdrant_client.http.models import Distance, VectorParams from langchain_openai.embeddings import OpenAIEmbeddings from langchain.storage import LocalFileStore from langchain_qdrant import QdrantVectorStore from langchain.embeddings import CacheBackedEmbeddings from langchain_core.prompts import ChatPromptTemplate from langchain_core.globals import set_llm_cache from langchain_openai import ChatOpenAI from langchain_core.caches import InMemoryCache from operator import itemgetter from langchain_core.runnables.passthrough import RunnablePassthrough from langchain_core.runnables.config import RunnableConfig import uuid load_dotenv() os.environ["LANGCHAIN_PROJECT"] = f"Mike HF Production Rag - {uuid.uuid4().hex[0:8]}" os.environ["LANGCHAIN_TRACING_V2"] = "false" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" ### Global Section ### """ GLOBAL CODE HERE """ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) Loader = PyMuPDFLoader # Typical Embedding Model core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") # Typical QDrant Client Set-up collection_name = f"pdf_to_parse_{uuid.uuid4()}" client = QdrantClient(":memory:") client.create_collection( collection_name=collection_name, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) # Adding cache! store = LocalFileStore("./cache/") cached_embedder = CacheBackedEmbeddings.from_bytes_store( core_embeddings, store, namespace=core_embeddings.model ) # Typical QDrant Vector Store Set-up vectorstore = QdrantVectorStore( client=client, collection_name=collection_name, embedding=cached_embedder) rag_system_prompt_template = """\ You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existence of context. """ rag_message_list = [ {"role" : "system", "content" : rag_system_prompt_template}, ] rag_user_prompt_template = """ Question: {question} Context: {context} """ chat_prompt = ChatPromptTemplate.from_messages([ ("system", rag_system_prompt_template), ("human", rag_user_prompt_template) ]) chat_model = ChatOpenAI(model="gpt-4o") set_llm_cache(InMemoryCache()) def split_file(file: AskFileMessage): import tempfile with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile: with open(tempfile.name, "wb") as f: f.write(file.content) # separate_pages = [] loader = Loader(tempfile.name) documents = loader.load() # separate_pages.extend(page) # one_document = "" # for page in separate_pages: # one_document+= page.page_content docs = text_splitter.split_documents(documents) for i, doc in enumerate(docs): doc.metadata["source"] = f"source_{id}" return docs ### On Chat Start (Session Start) Section ### @cl.on_chat_start async def on_chat_start(): """ SESSION SPECIFIC CODE HERE """ files = None # Wait for the user to upload a file while files == None: files = await cl.AskFileMessage( content="Please upload a PDF File file to begin!", accept=["application/pdf"], max_size_mb=20, timeout=180, ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`...", disable_human_feedback=True ) await msg.send() docs = split_file(file) vectorstore.add_documents(docs) retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 15}) retrieval_augmented_qa_chain = ( {"context": itemgetter("question") | retriever, "question": itemgetter("question")} | RunnablePassthrough.assign(context=itemgetter("context")) | chat_prompt | chat_model ) msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() cl.user_session.set("chain", retrieval_augmented_qa_chain) # ### Rename Chains ### # @cl.author_rename # def rename(orig_author: str): # """ RENAME CODE HERE """ ### On Message Section ### @cl.on_message async def main(message: cl.Message): """ MESSAGE CODE HERE """ chain = cl.user_session.get("chain") msg = cl.Message(content="") async for stream_response in chain.astream( {"question":message.content}, config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]) ): await msg.stream_token(stream_response.content) await msg.send()