Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,8 @@ from transformers import BlipProcessor, BlipForConditionalGeneration
|
|
6 |
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
7 |
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
|
8 |
import IPython.display as ipd
|
|
|
|
|
9 |
|
10 |
|
11 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
@@ -34,20 +36,14 @@ with gr.Blocks(theme=gr.themes.Ocean(primary_hue="pink", neutral_hue="indigo", f
|
|
34 |
return processor.decode(out[0], skip_special_tokens=True)
|
35 |
|
36 |
def leer(texto):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
)
|
41 |
-
modelA = models[0]
|
42 |
-
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
|
43 |
-
generator = task.build_generator(modelA, cfg)
|
44 |
-
|
45 |
-
text = texto
|
46 |
|
47 |
-
|
48 |
-
wav, rate = TTSHubInterface.get_prediction(task, modelA, generator, sample)
|
49 |
|
50 |
-
return
|
51 |
|
52 |
|
53 |
button.click(describir, [textbox], output)
|
|
|
6 |
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
7 |
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
|
8 |
import IPython.display as ipd
|
9 |
+
import requests
|
10 |
+
|
11 |
|
12 |
|
13 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
|
|
36 |
return processor.decode(out[0], skip_special_tokens=True)
|
37 |
|
38 |
def leer(texto):
|
39 |
+
response = requests.post("https://charly-text-to-speech.hf.space/run/predict", json={
|
40 |
+
"data": [
|
41 |
+
texto,
|
42 |
+
]}).json()
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
data = response["data"]
|
|
|
45 |
|
46 |
+
return data
|
47 |
|
48 |
|
49 |
button.click(describir, [textbox], output)
|