MaykaGR commited on
Commit
0515ecb
verified
1 Parent(s): 397121d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -14,13 +14,7 @@ from torch.nn.utils.parametrizations import weight_norm
14
 
15
  login(token=os.environ["HF_TOKEN"])
16
 
17
-
18
  device = torch.device("cpu")
19
- processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
20
- model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cpu")
21
- pipe = StableAudioPipeline.from_pretrained("stabilityai/stable-audio-open-1.0")
22
- pipe = pipe.to("cpu")
23
-
24
 
25
  #img_url = 'https://www.caracteristicass.de/wp-content/uploads/2023/02/imagenes-artisticas.jpg'
26
 
@@ -38,6 +32,8 @@ with gr.Blocks(theme=gr.themes.Ocean(primary_hue="pink", neutral_hue="indigo", f
38
  output2 = gr.Audio(label="Audio")
39
 
40
  def describir(url):
 
 
41
  raw_image = Image.open(requests.get(url, stream=True).raw).convert('RGB')
42
  inputs = processor(raw_image, return_tensors="pt").to("cpu")
43
  out = model.generate(**inputs)
@@ -45,6 +41,8 @@ with gr.Blocks(theme=gr.themes.Ocean(primary_hue="pink", neutral_hue="indigo", f
45
  return leer(processor.decode(out[0], skip_special_tokens=True))
46
 
47
  def leer(texto):
 
 
48
  prompt = texto
49
  negative_prompt = "Low quality."
50
 
 
14
 
15
  login(token=os.environ["HF_TOKEN"])
16
 
 
17
  device = torch.device("cpu")
 
 
 
 
 
18
 
19
  #img_url = 'https://www.caracteristicass.de/wp-content/uploads/2023/02/imagenes-artisticas.jpg'
20
 
 
32
  output2 = gr.Audio(label="Audio")
33
 
34
  def describir(url):
35
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
36
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cpu")
37
  raw_image = Image.open(requests.get(url, stream=True).raw).convert('RGB')
38
  inputs = processor(raw_image, return_tensors="pt").to("cpu")
39
  out = model.generate(**inputs)
 
41
  return leer(processor.decode(out[0], skip_special_tokens=True))
42
 
43
  def leer(texto):
44
+ pipe = StableAudioPipeline.from_pretrained("stabilityai/stable-audio-open-1.0")
45
+ pipe = pipe.to("cpu")
46
  prompt = texto
47
  negative_prompt = "Low quality."
48