Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
from PIL import Image | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
import requests | |
import base64 | |
import tempfile | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cpu") | |
class Aspecto(): | |
pass | |
screen = Aspecto() | |
with gr.Blocks(theme=gr.themes.Ocean(primary_hue="pink", neutral_hue="indigo", font=[gr.themes.GoogleFont("Montserrat"), "Playwrite England SemiJoine", "Quicksand"])) as demo: | |
image = gr.Image(label="Imagen", sources = ["upload","clipboard"]) | |
with gr.Row(): | |
button = gr.Button("Describir", variant="primary") | |
clear = gr.Button("Borrar") | |
output = gr.Textbox(label="Resumen") | |
with gr.Row(): | |
button2 = gr.Button("Leer", variant="primary") | |
clear = gr.Button("Borrar") | |
output2 = gr.Audio(label="Audio") | |
def describir(image): | |
raw_image = image | |
inputs = processor(raw_image, return_tensors="pt").to("cpu") | |
out = model.generate(**inputs) | |
return processor.decode(out[0], skip_special_tokens=True) | |
def leer(texto): | |
response = requests.post("https://charly-text-to-speech.hf.space/run/predict", json={ | |
"data": [ | |
texto, | |
]}).json() | |
data = response['data'][0] | |
# Extraer la parte de base64 del string (eliminar el prefijo 'data:audio/flac;base64,') | |
audio_base64 = data.split(',')[1] | |
# Decodificar el string base64 | |
audio_data = base64.b64decode(audio_base64) | |
# Crear un archivo temporal | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.flac') as temp_audio_file: | |
temp_audio_file.write(audio_data) | |
temp_audio_path = temp_audio_file.name | |
return temp_audio_path | |
button.click(describir, [image], output) | |
button2.click(leer, [output], output2) | |
demo.launch(debug=True) |