proyectomod / app.py
MaykaGR's picture
Update app.py
da5f2d4 verified
import gradio as gr
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import requests
import base64
import tempfile
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cpu")
class Aspecto():
pass
screen = Aspecto()
with gr.Blocks(theme=gr.themes.Ocean(primary_hue="pink", neutral_hue="indigo", font=[gr.themes.GoogleFont("Montserrat"), "Playwrite England SemiJoine", "Quicksand"])) as demo:
image = gr.Image(label="Imagen", sources = ["upload","clipboard"])
with gr.Row():
button = gr.Button("Describir", variant="primary")
clear = gr.Button("Borrar")
output = gr.Textbox(label="Resumen")
with gr.Row():
button2 = gr.Button("Leer", variant="primary")
clear = gr.Button("Borrar")
output2 = gr.Audio(label="Audio")
def describir(image):
raw_image = image
inputs = processor(raw_image, return_tensors="pt").to("cpu")
out = model.generate(**inputs)
return processor.decode(out[0], skip_special_tokens=True)
def leer(texto):
response = requests.post("https://charly-text-to-speech.hf.space/run/predict", json={
"data": [
texto,
]}).json()
data = response['data'][0]
# Extraer la parte de base64 del string (eliminar el prefijo 'data:audio/flac;base64,')
audio_base64 = data.split(',')[1]
# Decodificar el string base64
audio_data = base64.b64decode(audio_base64)
# Crear un archivo temporal
with tempfile.NamedTemporaryFile(delete=False, suffix='.flac') as temp_audio_file:
temp_audio_file.write(audio_data)
temp_audio_path = temp_audio_file.name
return temp_audio_path
button.click(describir, [image], output)
button2.click(leer, [output], output2)
demo.launch(debug=True)