proyectomod / app.py
MaykaGR's picture
Update app.py
5b61863 verified
raw
history blame
1.66 kB
import gradio as gr
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
from outetts.v0_1.interface import InterfaceHF, InterfaceGGUF
interface = InterfaceHF("OuteAI/OuteTTS-0.1-350M")
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cpu")
class Aspecto():
pass
screen = Aspecto()
with gr.Blocks(theme=gr.themes.Ocean(primary_hue="pink", neutral_hue="indigo", font=[gr.themes.GoogleFont("Montserrat"), "Playwrite England SemiJoine", "Quicksand"])) as demo:
textbox = gr.Textbox(label="Url")
with gr.Row():
button = gr.Button("Describir", variant="primary")
clear = gr.Button("Borrar")
output = gr.Textbox(label="Resumen")
with gr.Row():
button2 = gr.Button("Leer", variant="primary")
clear = gr.Button("Borrar")
output2 = gr.Audio(label="Audio")
def describir(url):
raw_image = Image.open(requests.get(url, stream=True).raw).convert('RGB')
inputs = processor(raw_image, return_tensors="pt").to("cpu")
out = model.generate(**inputs)
return processor.decode(out[0], skip_special_tokens=True)
def leer(texto):
output = interface.generate(
text= texto,
temperature=0.1,
repetition_penalty=1.1,
max_length=4096
)
#output.play()
#output.save("output.wav")
return output
button.click(describir, [textbox], output)
button2.click(leer, [output], output2)
demo.launch(debug=True)